
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SERVICE-ORIENTED ACCESS CONTROL

by

Joseph W. Lukefahr

September 2014

Thesis Advisor: Dennis Volpano
Second Reader: Geoffrey Xie

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

09-26-2014
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 07-01-2012 to 09-26-2014
4. TITLE AND SUBTITLE

SERVICE-ORIENTED ACCESS CONTROL
5. FUNDING NUMBERS

6. AUTHOR(S)

Joseph W. Lukefahr

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As networks grow in complexity and data breaches become more costly, network administrators need better tools to help design
networks that provide service-level availability while restricting unauthorized access. Current research, specifically in declarative
network management, has sought to address this problem but fails to bridge the gap between service-level requirements and low-level
configuration directives. We introduce service-oriented access control, an approach that frames the problem in terms of maintaining
service-level paths between users and applications. We show its use in several scenarios involving tactical networks typically seen in
the military’s field artillery community.

14. SUBJECT TERMS

computer network, network management, network design, data communications, network security, network
access control, network service

15. NUMBER OF
PAGES 99

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

SERVICE-ORIENTED ACCESS CONTROL

Joseph W. Lukefahr
Captain, United States Marine Corps
B.S., Texas A&M University, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Joseph W. Lukefahr

Approved by: Dennis Volpano
Thesis Advisor

Geoffrey Xie
Second Reader

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

As networks grow in complexity and data breaches become more costly, network adminis-
trators need better tools to help design networks that provide service-level availability while
restricting unauthorized access. Current research, specifically in declarative network man-
agement, has sought to address this problem but fails to bridge the gap between service-
level requirements and low-level configuration directives. We introduce service-oriented
access control, an approach that frames the problem in terms of maintaining service-level
paths between users and applications. We show its use in several scenarios involving tacti-
cal networks typically seen in the military’s field artillery community.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Problem Statement. 2

1.2 Research Description. 3

1.3 Research Benefits . 4

1.4 Organization . 4

2 Related Work 5
2.1 Network Management and Design 5

2.2 Zero-Configuration Networking 10

2.3 Static Reachability Analysis . 12

3 Network Model 15
3.1 Physical Topology . 16

3.2 Logical Organization . 18

3.3 Network Behavior . 21

4 Access Control Logic 25
4.1 Basic Rules . 26

4.2 Assumptions . 30

4.3 Anti-Forwarding Rules . 31

4.4 Anti-Encapsulation Rules . 36

4.5 A Decision Procedure for the Logic 37

4.6 Soundness and Completeness 38

5 Scenarios 41
5.1 First Scenario: Basic Use . 42

5.2 Second Scenario: Resolvable Conflicts 50

5.3 Third Scenario: Unresolvable Conflicts 55

vii

6 Conclusion 63

Appendix A Network Semantics 67

Appendix B Access Control Logic 73

List of References 79

Initial Distribution List 83

viii

List of Figures

Figure 4.1 Depiction of (LINK-FILTER-DSTIP) rule application 27

Figure 4.2 Depiction of (TERMINAL) rule application 28

Figure 4.3 Depiction of (SUBNET) rule application 30

Figure 4.4 Depiction of (FWD) rule application 34

Figure 4.5 Depiction of (LINK-FWD) rule application 35

Figure 4.6 Depiction of (DEVICE-FWD) rule application 36

Figure 5.1 Common Marine Corps field artillery battalion data network . . . 42

Figure 5.2 Physical network topology for common Marine Corps field artillery
battalion data network . 43

Figure 5.3 Service specification excerpt, first scenario 44

Figure 5.4 Result of positive derivation, first scenario 47

Figure 5.5 Result of negative derivation, first scenario 50

Figure 5.6 Excerpt of fresh variables generated during positive derivation, sec-
ond scenario . 53

Figure 5.7 First attempt, negative derivation, second scenario 54

Figure 5.8 Second attempt, negative derivation, second scenario 56

Figure 5.9 Physical topology of example network with single server 56

Figure 5.10 Excerpt of fresh variables generated during positive derivations,
third scenario . 58

Figure 5.11 First attempt, negative derivation, third scenario 59

Figure 5.12 Second attempt, negative derivation, third scenario 60

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Acronyms and Abbreviations

ACL access control list

BGP Border Gateway Protocol

DHCP Dynamic Host Configuration Protocol

DNS-SD DNS-based Service Discovery

DOD Department of Defense

FML Flow-based Management Language

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IDS intrusion detection system

IEEE Institute for Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4LL Internet Protocol Version 4 Link-Local Addressing

IRC Internet Relay Chat

LAN local area network

MAC media access control

mDNS Multicast DNS

NAT network address translation

OSPF Open Shortest Path First

PDU protocol data unit

xi

QoS quality of service

RIP Routing Information Protocol

SOAC service-oriented access control

TCP Transmission Control Protocol

UDP User Datagram Protocol

USMC United States Marine Corps

VLAN virtual local area network

VPLS Virtual Private LAN Service

VPN virtual private network

WLAN wireless local area network

Zeroconf zero-configuration networking

xii

Acknowledgments

First and foremost, I thank God for his grace in giving me the ability and motivation to
complete this thesis. It is only by that grace that I could have accomplished such a feat. As
a result of this research effort and my time at the Naval Postrgaduate School, I have learned
that I can surely do all things through Jesus Christ who strengthens me.

I thank Dennis Volpano for his outstanding expertise, patience, and mentorship as my thesis
advisor for the past year. He allowed me the freedom to explore new ideas, yet he knew
when and how to guide me in my work. He knew just how to encourage and motivate me
to tackle challenging problems. He once said, “Cracking hard nuts can be frustrating.” I
will remember this the next time I face an overwhelming problem. Most importantly, he
was legitimately concerned about my professional development and personal well-being.
I also thank Geoffrey Xie for his help not only with my thesis but also as an instructor of
several advanced networking courses. Through his knowledge and teaching style, I gained
critical knowledge and skills that will certainly help me in my upcoming assignment.

I thank my classmates for their help and optimism over the past two years. Iron sharpens
iron, and because of the high-caliber individuals who sat in class with me through some dif-
ficult exams and excruciating lectures, I have become a better student, researcher, thinker,
and Marine. I look forward to working with each of them again back in the fleet.

Finally, I cannot thank my wife enough for her patience and perseverance. While I was
working late nights, early mornings, and holiday weekends, she was raising two young
children. Words cannot express my gratitude to my family for their support. I love them so
much.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:

Introduction

Computer network complexity continues to grow rapidly. Bridges, routers, firewalls, and
other network devices flood the marketplace. Each new device provides some new capa-
bility in allowing the network administrator to manage his network. That new capability
brings the added requirement of configuring the device to ensure proper operation without
compromising security. Furthermore, proper operation requires proper care and mainte-
nance. A network administrator who is competent and properly trained, therefore, becomes
even more necessary for meeting these added demands.

However, as networks change in size and complexity with the introduction of each new
technology, the task of ensuring service-level availability and access control becomes more
and more daunting. The tools that today’s network administrator must use to accomplish
this task are inadequate. At this point in time, the network administrator must rely on
industry best practices, experience, and trial-and-error methods to design and secure his
network.

The discrepancy between the increasing complexity of today’s networks and the network
administrator’s ability to manage that ability continues to grow. As it grows, the security of
the world’s sensitive information becomes more and more vulnerable to theft and exploita-
tion. This, in turn, leads to more and more incidents of cyber attack and data loss, costing
companies, government organizations, and individuals millions of dollars.

One only needs to read any daily news source to find reports of these incidents. Stories
of disgruntled students hacking into school servers to change grades are common. Reports
of data loss by small businesses are seen frequently. Loss of sensitive information by
large corporations like Target [1] and TJX [2] are becoming more and more common in
international news. Government organizations like the Department of Veterans Affairs are
experiencing more and more attempts to exfiltrate sensitive information from their servers.

Many of these incidents find their causes in networks that are poorly designed or access
control mechanisms that fail to achieve the organization’s access control policy. Network

1

administrators, despite their best efforts using the tools at their disposal, cannot plug every
security hole and secure every service. As networks and their complexity continue to grow,
best practices and trial-and-error methods cannot meet the increased security requirements,
and the result is costly.

Network administrators need proper tools to manage this complexity. They need ways
to systematically design networks and implement access controls. They should be able
to specify service-level access control policies and then automatically and systematically
derive a network configuration that necessarily and sufficiently satisfies those service-level
requirements. Our research seeks to address this issue. This introductory chapter provides
some motivation for this issue, defines this problem in more specific terms, and sets the
stage for our work.

1.1 Problem Statement
Ultimately, we seek a solution to the problem that underlies many of the data breaches and
network attacks mentioned earlier. In order to achieve that solution, we must first state
the problem in concrete terms. This section presents that problem statement and some
terminology used throughout this work.

We specifically describe the aspects of this problem in later chapters, but we provide brief
definitions here. A physical topology is a description of the physical arrangement of devices
in a network and the physical connections between those devices. A service specification

is simply a representation of the services or resources available on a network, as defined
by their various standards documents. Finally, a logical organization is a description of
how devices are configured to control the flow of data within the network (e.g. virtual
local area network (VLAN) configuration, access control list (ACL) placement, or routing
design). Changing the network’s logical organization affects how data flows in a network
and therefore affects users’ access to services.

With these definitions, we state our problem, the service-oriented access control problem,
as follows. Given a network’s physical topology, a specification of a service that is to run
on the network, and a policy governing which users have access to the service, output a
logical organization of the topology, if it exists, that achieves the policy.

2

1.2 Research Description
The main thrust of this research is to design a framework within which the service-oriented
access control (SOAC) problem can be solved for a limited set of hardware and a limited
set of possible services. For a given network and service specification, multiple logical
organizations may exist. It should be understood, then, that the ultimate goal of this re-
search effort, but beyond the scope of this thesis, is to develop an algorithm to compute
the optimum solution based on some criteria. In this work, our focus is a framework and
methodology that will allow us to find a solution, if one exists.

Furthermore, the range of possible devices, services, and configuration options is extensive,
so our work focuses on a limited set of devices with limited capabilities. Specifically, we
focus on Internet Protocol (IP) networks with routers that utilize static routing and stateless
packet filtering, Ethernet switches with media access control (MAC) filtering capabilities,
and typical hosts and servers. Likewise, the range of network services in existence is vast,
so we limit our focus to a subset of these services in order to convey the basic concepts
of the framework. Specifically, we focus on Hypertext Transfer Protocol (HTTP), Secure
Hypertext Transfer Protocol (HTTPS), and Internet Relay Chat (IRC). We also constrain
our work in terms of network size. As computer networks can grow quite large, we focus
our work on small-scale tactical networks like those found in the military’s battalion-sized
units.

Notice, however, that the SOAC problem does not have any specific logical organization
as input. Any algorithm for the problem must produce such an organization and is free to
explore all possibilities. Therefore, a solution to a SOAC instance may be correct according
to its service policy but involve network configuration that does not comply with industry
best practice or human intuition.

Our work is guided by several research questions. These questions, whose answers are
discussed throughout this work, are listed below.

1. Can a network’s logical organization be automatically derived based on its physical
topology and service requirements?

2. What constitutes a logical organization?
3. What constitutes a network service?

3

4. What constitutes a service specification?
5. How can a network’s logical organization change based on the service specification?

1.3 Research Benefits
This study benefits all organizations that rely on computer networks to communicate and
share information. Each of these organizations has a network of physically connected
devices and a set of services that must be supported by that network. Therefore, each
of these organizations finds itself dealing with an instance of the SOAC problem.

This study benefits the Department of Defense (DOD) in particular because the data and
services on its networks are particularly sensitive. The national security of the nation heav-
ily depends of the security of the networks maintained by the DOD. Therefore, the need
for tools that aid in secure network construction is critical. This work helps meet that need
and helps ensure the security of the nation’s secrets.

1.4 Organization
Chapter 2 provides background information on this research topic. Several sections de-
scribe the current state of research in this area and how previous work contributes to our
research. This chapter also provides motivation for our approach to the problem.

Chapter 3 details the model that we use to frame the problem. It introduces abstractions for
the network’s physical topology, abstractions for the corresponding logical organization,
and an operational semantics to describe network behavior.

Chapter 4 describes the design of our access control logic used to reason about denying
access to network resources.

Chapter 5 shows how we can use the SOAC approach to configure a common tactical
network. Three scenarios show the application of the framework on tactical networks seen
in United States Marine Corps (USMC) field artillery battalions.

Chapter 6 includes our conclusion of the research and recommendations for future work.

4

CHAPTER 2:

Related Work

Efforts have been made to ease the burden of network management. What these efforts
have in common is a way to specify a particular logical organization in a high-level lan-
guage that is then reasoned about for properties like conflicts, reachability, black holes,
etc. and ultimately translated automatically into low-level device configuration commands.
Contrast this with SOAC. It does not include any logical organization as input. A solution
to SOAC is a logical organization. For this reason, SOAC is similar to the problem of
zero-configuration networking (Zeroconf) except the latter does not include a service de-
scription as input. Zeroconf merely tries to establish local-area connectivity and a name
space.

We contrast earlier efforts in network management and Zeroconf with SOAC in more detail
in the following sections. In Section 2.1, we survey the fields of network management and
network design, relating various works to SOAC. In Section 2.2, we introduce Zeroconf and
explain the fundamental assumption that separates Zeroconf and SOAC. In Section 2.3, we
investigate static reachability analysis and its relation to our work. As we will see, SOAC
is a problem that is much different from the problems addressed by declarative network
management and zero-configuration networking.

2.1 Network Management and Design
The field of current network management research that most closely relates to our work
is declarative network management. This research aims to ease the task of network man-
agement by allowing the network administrator to specify network policy in a declarative
manner, typically using relational logic. With a declarative network management approach,
the network administrator expresses what properties must be present in the network. Vari-
ous mechanisms and engines take that policy and convert it into lower-level configuration
directives to implement that policy in the network.

Narain et al. [3] present a declarative network management system based on model find-
ing. Motivated by the large gap between end-to-end infrastructure requirements and de-

5

tailed implementations, they offer a solution for four fundamental problems in network
management: network requirement specification, configuration synthesis, configuration er-
ror diagnosis, and configuration error repair. They express configuration information as a
database containing variables and configuration requirements as constraints on those vari-
ables. These requirements typically describe desired subnetting or IP address allocation.
The key to the system, therefore, is a requirement solver that takes a database and a set of
requirements as inputs and tries to compute values for the variables that satisfy the require-
ments. The requirement solver uses a model finder to convert requirements expressed as
first-order logic into Boolean constraints that serve as inputs for a SAT solver. The SAT
solver provides either a solution or a proof of unsolvability.

This work also addresses several issues relevant to our discussion. The motivation for the
work of Narain et al. [3] lies in the large gap between high-level infrastructure requirements
and the low-level configuration directives that meet those requirements. We notice a trend
in the design of these network management systems. Some collection of variables and
values make up the configuration space. Some knowledge base of network behavior is
captured in a systematic manner. Some set of requirements or desired outcomes, specified
in terms of the knowledge base, is provided. Finally, some engine instantiates or constrains
the variables based on the knowledge base and desired outcomes. However, the system
described by Narain et al. contains a knowledge base that only expresses knowledge of
the network. For example, they describe several requirements about IP addresses in the
network, including the requirement for unique IP addresses for hosts on the same subnet.
It does not justify these requirements in terms of granting or denying access to services.
Furthermore, we cannot tell how failure to meet the requirement affects the service. An
instance of SOAC includes a service specification and establishes a relationship between
the network and its services, hence the service-oriented nature of the problem.

Hinrichs et al. [4] provide an approach to network management using a declarative lan-
guage to specify policy and specialized network hardware to implement that policy in
the network. Motivated again by the inadequacy of traditional network configuration
techniques, the authors present Flow-based Management Language (FML), a flow-based
declarative network policy language. This language allows a network administrator to spec-
ify a rule containing several characteristics of a network flow – including source and target

6

users, source and target hosts, and source and target access points – and whether that flow
should be allowed, denied, or relegated to a certain path in the network. A security policy,
therefore, is a list of rules enforced in the network. The authors provide several examples
of policies for various uses, including access control, network address translation (NAT),
and quality of service (QoS). The authors implement this language within NOX [5], an
operating system for OpenFlow [6] controllers, and deploy policies specified in FML on
networks consisting of a series of OpenFlow switches.

This work provides some interesting insight and some potential overlap with a SOAC
approach. The authors [4] describe flows in terms of users, hosts, access points, and
protocols. FML ties flows to the network in two ways. First, for each flow, the
policy writer specifies source and destination access points. In the policy statements
allow(Us,Hs,As,Ut ,Ht ,At ,Prot,Req) and deny(Us,Hs,As,Ut ,Ht ,At ,Prot,Req), As and At

are network access points. Specifying these access points effectively ties flows to network
elements besides source and destination hosts. Second, the policy writer specifies network
nodes through which flows are specifically routed (with the waypoint keyword) or through
which flows are specifically not routed (with the avoid keyword). SOAC requires that we
focus simply on users and services. We should consider the network a “black box”, where
we are not necessarily concerned with the details of the network configuration as long as it
is correct with respect to the service-level requirements. We are not necessarily concerned
with routing of flows through a network as long as the service-level goals are met.

Chen et al. [7] present a database-driven declarative system for network management and
operation. This system’s design is motivated by the increasingly complex task of network
management, by the difficulty of network-wide reasoning, and by the dynamic nature of
networks. The authors’ key observation about the state of affairs in network management
is that a systematic expression of domain knowledge (i.e., relationships between various
network protocols and between protocols and the network devices that support them). Their
system, therefore, captures this knowledge and exposes high-level primitives to simplify
and automate both device-specific and network-wide management while minimizing the
need for human intervention. The building blocks of this system include a data model that
stores network device configuration and status, a set of rules representing the previously
mentioned domain knowledge, and an engine that leverages the data and ruleset to provide

7

database-like operations like data queries, insertions, and deletions. Rules, as described
in the paper, typically describe how some high-level network behavior depends on lower-
level network or device configuration. The resulting capabilities, therefore, are network-
wide reasoning, automatic configuration (given the ability to write configuration data), and
network policy enforcement.

This work seems to address many of the issues that we pose in our introductory discussion.
Chen at. al. [7] share our motivation that networks are growing in complexity and that tools
available to network administrators today fail to manage that complexity. They also identify
the lack of a systematic description of network behavior as a major factor in the discrep-
ancy. They also seek to provide high-level primitives and abstractions to simplify the task of
describing network properties. For example, they simplify the task of configuring a Virtual
Private LAN Service (VPLS) connection, which is difficult when performed manually, with
the single database query ActiveVPLSConnection.insert(int1_id,int2_id). This
approach focuses on providing high-level network abstractions for network administrators
to use in realizing network policy. Though these higher-level abstractions are useful, the
focus here is the expression of network policy. In SOAC, we need an approach that focuses
on users and their access to services. Network organization and relationships between net-
work elements should not be taken as input but rather generated as a part of a solution to a
SOAC instance.

Several other works [8]–[11] in the field fit within the same basic framework. One of
the common themes in this research is that a network administrator specifies a network
policy, usually expressed in terms of network elements or relationships between network
elements. For example, FML requires a policy writer to define a flow by specifying users,
hosts, access points, protocol, and whether only requests should be considered. In order to
specify the access points, the writer must have some understanding of how access points
and hosts relate to each other in the network. When considering the SOAC problem, these
approaches seem to fall short because they tie high-level policy to the network. A SOAC
instance requires a policy governing which users have access to which services, without
reference to underlying network elements.

With this understanding, the fundamental difference between declarative network manage-
ment and SOAC lies in the inputs of the two problems. A SOAC instance does not include

8

a policy regarding flows, like FML, or relationships between network elements, like Narain
et al. Instead, the only sort of policy input to a SOAC instance is a service access policy
governing which users may or may not access a given service. A declarative network man-
agement approach entails expressing a policy that the network must be configured a certain
way, algorithmically deriving that configuration, and then using experience and industry
best practices to justify why that policy achieves the required access control. This gap
between network policy and service-level requirements motivates our work. We seek an
approach that is more rigorous and complete than relying on experience and industry best
practices.

Departing from declarative network management, Sung et al. [12] focus on network de-
sign in enterprise networks. They share our motivation of simplifying the task of network
management, and they specifically look at the unique challenges of designing enterprise
networks (i.e. the need for highly customized designs with wider ranges of security, re-
silience, and performance requirements). They decompose the task of enterprise network
design into four steps: (1) physical topology planning, (2) VLAN and link-layer design,
(3) routing design, and (4) reachability control. In this work, they address VLAN design
and reachability control and propose systems for accomplishing each. For VLAN design,
a system takes as input a mapping of hosts to organizational groups and a table of traffic
patterns, in kilobits per second, between groups. It outputs VLAN assignments for hosts
and placement of designated router and root bridge for each VLAN, all such that traffic
cost is minimized. Sung et al. define this cost as the sum of broadcast traffic, inter-VLAN
data traffic, and intra-VLAN data traffic. For reachability control, a system takes as input
a reachability matrix between VLANs and a set of topology-changing events to which the
network must respond while meeting all requirements in the reachability matrix. It outputs
recommended ACL placement based on both correctness and feasibility criteria. Multiple
solutions for ACL placement may meet correctness and feasibility criteria, so the designer
chooses one of four placement strategies based on preference. Sung et al. evaluate this ap-
proach by applying it to a large-scale campus network topology and comparing broadcast
traffic, data traffic, and ACL correctness between the currently running network and the
systematic design. They also used systematic ACL placement to discover an inconsistency
in access control on the currently running network.

9

Concerning SOAC and this thesis, this paper [12] provides several points of discussion.
First, the reachability matrix, originally proposed in previous work [13] and applied here,
closely resembles the notion of a service policy that a SOAC instance takes as input. In the
reachability matrix MR, traffic permitted from VLAN i to VLAN j is denoted by MR(i, j)

and is expressed as a set of packets whose header information meet certain criteria given
in first-order logic. Expressing reachability in terms of traffic between VLANs does not
match our intent to express a service policy only in terms of users and their access to ser-
vices. However, we could adapt the reachability matrix to capture application-layer mes-
sages allowed (or not allowed) between hosts, which better suits our purposes. Second,
Sung et al. propose four strategies used as preferences for ACL placement that is certainly
useful in SOAC. They observe that multiple solutions for ACL placement may exist and
that some strategy for choosing the best solution should be employed. In the same way,
multiple solutions may exist for a SOAC instance, so some strategy for choosing the best
solution should be employed. Third, the size of networks addressed by Sung et al. is much
larger than those addressed in this thesis. Whereas we consider small-scale networks like
those supporting battalion-sized units, they focus on large-scale enterprise networks con-
sisting of thousands of hosts and hundreds of routers and switches. Despite the difference in
scale, this work is still relevant specifically in its discussion of systematic reachability con-
trol and its heuristics for ACL placement, as mentioned earlier. However, it is constrained
to achieving access control through VLAN assignment and ACL placement. Sung et al.

show how this approach mirrors the most common practice in enterprise network design.
Nonetheless, we seek an approach that allows us to utilize the entire logical organization
space to determine a solution. A solution to a SOAC instance may involve VLAN assign-
ment and ACL placement, but such tasks are not necessary. An equally correct solution
may not involve either of these practices.

2.2 Zero-Configuration Networking
The field of Zeroconf takes a unique approach to taking the guesswork and human inter-
vention out of network design and administration. The uniqueness of Zeroconf lies in its
ultimate goal. The initial requirements document [14] describes this goal, where network
hosts automate the task of network configuration. In home networks, mobile networks,
ad hoc networks, and other emerging networks, there may not be adequate personnel or

10

knowledge available to administer the network properly. Therefore, Zeroconf seeks au-
tomatic configuration of networks without manual intervention or central administration.
Though originally conceived as a solution in smaller ad hoc networks, some research efforts
seek to extend this functionality to larger networks, including enterprise networks.

Zeroconf is a collection of complementary network protocols that, when employed on a
network of devices with connectivity at the data link layer, accomplish four specific tasks
required to enable networked applications to communicate over an IP network. Those four
tasks, as specified in a host profile [15], are listed below.

1. IP interface configuration
2. Translation between host name and IP address
3. IP multicast address allocation
4. Service discovery

A Zeroconf implementation is essentially a suite of protocols that collectively accomplish
these tasks. For example, popular Zeroconf implementation, Apple Bonjour [16], imple-
ments Internet Protocol Version 4 Link-Local Addressing (IPv4LL) [17] for interface con-
figuration, Multicast DNS (mDNS) [18] for host name resolution, and DNS-based Service
Discovery (DNS-SD) [19] for service discovery. In this protocol, a service provider adver-
tises a service that is accessible to any other host that understands the protocol. Bonjour
does not specifically address multicast address allocation. These three protocols work to-
gether to achieve the goal of automatic network configuration for supporting services and
networked applications.

Early Zeroconf implementations accommodated small single-router ad hoc networks (e.g.,
a home local area network (LAN)). Some research efforts seek to extend this functional-
ity to larger multi-router networks. Single-router Zeroconf solutions do not address some
issues associated with multi-router networks. Specifically, single-router solutions fail to
provide dynamic exchange of routing information between routers and consistent assign-
ment of IP subnets in the network. These issues motivate recent work in the field. Akinlar
et al. [20], [21] present algorithms to address these issues in multi-router networks. With
these issues addressed, Zeroconf implementations can ensure IP connectivity between all
hosts in a multi-router network and can therefore facilitate operation of the higher-level host

11

name resolution and service discovery protocols throughout the network. Therefore, they
can enable automatic configuration and service discovery in larger networks like tactical
and small organizational networks.

Fundamentally, Zeroconf addresses the need to enable communication without manual in-
tervention or central administration. Because of the lack of central administration, there-
fore, individual hosts are responsible for controlling access to their services. However, the
only access control mechanism available to hosts is not advertising services. This lack of
fine-grained security control is simply unacceptable in most use cases, even in home net-
works where certain family members like children may not access certain services. SOAC
assumes that a central administration authority is available to provide a service specifi-
cation. Therefore, a SOAC approach enables that authority to implement a fine-grained
access control scheme for the network’s resources that Zeroconf simply cannot provide.

Furthermore, a major difference between a Zeroconf approach and SOAC lies in what
network properties are configured. As previously stated, a specific protocol focuses on
unique IP address and subnet assignment among devices. Once it achieves this, host name
resolution and service discovery protocols allow service-level communication. The only
network configuration that occurs in this process is assignment of IP addresses. Though
this may be enough to enforce a security policy in some cases, we see the need to leverage
as many configuration options as possible in order to achieve the fine-grained security needs
of tactical and organizational network administrators.

2.3 Static Reachability Analysis
Static reachability analysis is about analyzing a description of a network’s logical organi-
zation to determine whether the organization admits packets between given hosts. Xie et

al. [13] introduce the notion of static analysis for determining reachability across a net-
work, and they outline several advantages of the approach. First, static analysis allows a
network administrator to compute all possible packets that could travel from a given source
to a given destination. Second, static analysis allows a network administrator to compute
all possible paths that a given packet could take and, therefore, all possible destinations
that a given packet at a given location could reach. Third, static analysis mitigates risk
by allowing analysis before network deployment and before a problem arises. Fourth, a

12

network designer can use static analysis to determine whether a network’s implementation
(i.e. low-level configuration) meets the designer’s intent.

Xie et al. [13] describe how to compute reachability in a network using static analysis of
router configuration files. They model a network as a graph G = (V,E,F), where V is
the set of routers, E is the set of directed edges defining connectivity between routers, and
F is a function that annotates edges in E such that, for each edge 〈u,v〉 ∈ E, Fu,v ∈ F
is the set of packets that the network can carry from u to v. Fu,v is also expressed as
a packet filter fu,v containing predicates that test properties of packet p, returning true if
p∈Fu,v. This enables reasoning about packet flow over multiple routers by simply applying
set operations and first-order logic. For example, determining the set of packets allowed
from router u through router v to router w is done taking the intersection Fu,v ∩ Fv,w or
by determining the conjunction fu,v ∧ fv,w. Furthermore, forwarding state (i.e. collective
contents of each router’s forwarding table) influences reachability, so they define Fu,v(s) as
a function mapping the network’s forwarding state s to the set of packets allowed from u

to v when the network is in state s. With these primitives, Xie et al. show how to compute
network-wide reachability bounds using classical graph algorithms.

More recent work in this area extends static reachability analysis in various ways. Feam-
ster and Balakrishnan [22] use static analysis to detect Border Gateway Protocol (BGP)
configuration faults. Mai et al. [23] cast static analysis Kazemian et al. [24] introduce
a protocol-agnostic framework that statically analyzes network device configurations to
identify reachability failures, forwarding loops, traffic isolation, and leakage problems.

In terms of inputs and outputs, however, these works address a common problem. This
problem takes as input some representation of a network’s physical topology and logi-
cal organization, usually in the form of router configuration files. It outputs information
about useful network-wide properties, like reachability or configuration consistency. From
this perspective, static reachability analysis fundamentally differs from SOAC. Whereas
static analysis takes configuration as input and provides network-wide properties as out-
put, SOAC requires network-wide requirements, in the form of users and their access to
services, as input and provides configuration as output.

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

CHAPTER 3:

Network Model

A TCP/IP network is a complex system. It consists of devices that communicate with each
other through interfaces using a set of complex communications protocols. It is possible,
however, to reduce this complex set of protocols and vast range of configuration parameters
into concepts that are both simple to understand and relevant to a specific set of network
properties. For reasoning about network access control (i.e., developing a formal logical
method for ensuring controlled access to network resources), much of this complexity be-
comes unnecessary. Therefore, an important step toward achieving the formal method is
developing a model that eliminates as much complexity as possible without losing infor-
mation needed to reason about the properties in a real network. For example, it would be
unsatisfactory to model network performance without considering link-layer protocols for
resolving contention if multiple users share a network link.

In this work, we sought to build a rudimentary framework for approaching the issues asso-
ciated with service-oriented access control. Therefore, we focused on developing a model
that eliminates unnecessary complexity and simplifies the task of reasoning about service
oriented access control. We also focused on capturing the basic operation of the network
rather than one that tackles all possible features and capabilities used to achieve an ac-
cess control strategy. However, we kept a high level of granularity that enables reasoning
not only about a datagram’s movement between devices in the network but also about its
movement between layers of the network stack.

To this end, we developed a model employing several abstractions that we describe in this
chapter. Section 3.1 describes the network’s physical topology and how it is represented.
Section 3.2 describes the network’s logical organization, how it is represented, and how it
relates to the physical topology. Finally, Section 3.3 describes abstractions used to model
the network’s behavior, specifically abstractions to represent datagrams and to describe
how they are transported across the network.

15

3.1 Physical Topology
A network’s physical topology is one of the inputs to this problem. Therefore, it is im-
portant that we capture all necessary information about a network’s physical topology in
a manner that facilitates reasoning about access control within the network. To this end,
we designed a structured mapping to organize and label this information to support our
approach.

We organize this information into a mapping of devices and interfaces to their unique at-
tributes. For example, the mapping D represents a network and provides information about
the network’s devices, interfaces, and connectivity. Each device in D is uniquely named,
so for a device m on the network, (D m) provides information and attributes unique to m.
This allows us to reference attributes unique to m within D.

Though a physical topology can be extremely complex and detailed, we are only concerned
with the necessary pieces of information needed for our purposes. These necessary pieces
of information are described in this section. We begin by introducing the notion of a de-
vice’s type. We then show how a device’s network interfaces are named and organized.
We then show how we capture direct connectivity between interfaces. Finally, we describe
how we capture hardware-level addresses.

3.1.1 Device Type
If D represents a network, and m names a device in the network, then (D m).type is a set of
labels that indicate the type of m. The device’s type corresponds with its basic functionality
and capabilities. For example, an IP router is generally capable of receiving an IP packet
at one interface and forwarding it to another interface on the device for transmission based
on the longest matching network prefix of the packet’s destination IP address [25], [26].
Therefore, if the device m is of type router, or if router ∈ (D m).type, then m has this IP
routing capability within the model.

In this work, we considered clients (which we called hosts), IP routers, servers, Eth-
ernet switches. Therefore, (D a).type ⊆ {host,router,server,switch} for every device
a ∈ domain(D). IP routers have the packet forwarding capability described above as well
as stateless ingress packet filtering and egress packet filtering on all interfaces. Servers gen-

16

erally listen for incoming requests and have similar ingress and egress filtering capabilities.
Ethernet switches [27] can forward Ethernet frames and have ingress and egress filtering
capabilities based on MAC address. A device may have more than one type. For example, a
device may act as a server providing one service while acting as a client requesting another
service.

3.1.2 Network Interfaces
Each device connects to and communicates with the network through at least one net-
work interface. In many cases, devices communicate through several interfaces. Ethernet
switches, for example, may contain 24 or more network interfaces. Each interface contains
some unique attributes that must be captured.

For a device m, (D m).i f aces is a set of the names of all interfaces on the device. Each
interface is uniquely named, so if interface u is on device m, then u ∈ (D m).i f aces. Fur-
thermore, an interface can be uniquely referenced in order to preserve the interface’s unique
attributes. Information about u can be referenced by using the notation (D m).i f aces[u].

3.1.3 Direct Connections
For the interface u on m, (D m).i f aces[u].direct provides information about its directly
connected interfaces. This attribute is a set of names of all interfaces that have direct
physical-layer connectivity with u. By direct connectivity, we mean that connections are
established such that link-layer communication is possible. In an Ethernet network, for
example, (D m).i f aces[u].direct = {v} if u is connected to interface v on device n via an
Ethernet cable and if u can send an Ethernet frame to v. However, v is not necessarily able
to send a frame to u; we would have to say that (D n).i f aces[v].direct = {u} in order to
capture such a symmetric connection.

Because of (1) the ability to capture a one-to-many relationship between connected in-
terfaces and (2) the ability to capture asymmetric physical connections, this model can
represent wireless networks as well as wired networks. Though we do not explore wireless
networks specifically in this work, the model could be easily extended to allow for this.
If we have a wireless local area network (WLAN) [28] interface w that can communicate
with interfaces x, y, and z, then (D q).i f aces[w].direct = {x,y,z}.

17

3.1.4 MAC Address
For every network interface on every interface, except those interfaces belonging to an Eth-
ernet switch, we require a hardware-level address, or MAC address, that uniquely identifies
that interface on the network segment. (D m).i f aces[u].hwaddr provides this address for
interface u. We consider this attribute to be part of the physical topology of the network,
and therefore part of our problem’s input, because an interface’s MAC address is most
commonly set within the interface’s firmware.

We do not specify a format for this attribute. Though we only considered the ubiquitous
48-bit MAC address format specified in most Institute for Electrical and Electronics Engi-
neers (IEEE) 802 standards, the model remains format-independent. Throughout this work,
we represent 48-bit MAC addresses as six bytes, each written as two hexadecimal digits,
separated by colons. For example, (D m).i f aces[u].hwaddr = 45:09:ED:3A:01:BB.

3.2 Logical Organization
We capture information about the network’s logical organization in the same way we cap-
ture information about its physical topology. In addition to physical characteristics like
MAC addresses and direct connections, the mapping of devices and interfaces to their
unique attributes also includes attributes configurable by network administrators. We orga-
nize the attributes of a network’s logical organization just as we organize attributes of its
physical topology.

In a network represented by the mapping D, (D m).i f aces[u] provides logical information
like IP address for the interface u on device m just like it provides physical information
like MAC address. In this section, we describe how we capture pertinent information about
a network’s logical organization, specifically how we represent IP addresses and subnet
masks, forwarding table entries, and packet filter information.

In this thesis, logical organization is assumed not to be a function of dynamic events like
link or device failure. Logical organization affects access control, and an enterprise network
running spanning tree algorithms would preserve access control in response to link failures.
However, there are cases where organization is a function of failure. An example is a route
that changes based on an interior or exterior gateway routing protocol. An algorithm for

18

SOAC assumes it has the final say in all routing, and therefore if there are any physical
changes to network topology then the algorithm must be re-run to get a new organization.

3.2.1 IP Address and Subnet Mask
(D m).i f aces[u].ipaddr provides the network-level address, or IP address, for the interface
u on device m in network D. We consider the IP address to be part of the network’s logical
organization because, unlike the MAC address, the IP address of an interface is most com-
monly set by the device’s operating system (or by a user with administrative rights on the
device).

Likewise, (D m).i f aces[u].netmask provides the interface’s subnet mask. This attribute is
closely related to the IP address, is also commonly set within the device’s operating system
settings, and is therefore included as a part of the network’s logical organization.

Because of its ubiquity at the time of this work, we use the addressing scheme specified by
IP version 4 [29] in this model, and we use ipaddr to label this attribute. In this work, we
represent IP addresses in dotted decimal form (i.e., as four bytes) with each byte written
as a decimal number from zero to 255, separated by dots. However, it would be possible
to adapt this model to accommodate other layer 3 logical addressing schemes. Since the
IP address and subnet mask, therefore, are ultimately strings of 32 bits, common bitwise
operations can be performed on them. In this work, we use the bitwise AND operation
(represented as the & symbol), the bitwise OR operation (represented by the | symbol),
and the bitwise negation or one’s complement (represented by the ¬ symbol) as operations
on these attributes.

3.2.2 Forwarding Table Entries
IP routers generally contain some sort of table structure containing a mapping of networks
to interfaces. They use this table to properly route packets to their destination. Therefore,
the information in this table is an important part of a network’s logical organization. Be-
cause this table relates networks to interfaces, we capture the information in this forwarding
table in an attribute at each interface. For an interface u on device m, (D m).i f aces[u].dest

is an address governing which packets will be forwarded out interface u upon arriving at
other interfaces of m. This attribute follows the same format as the IP address and the
subnet mask. The bitwise operations mentioned earlier also apply to this attribute.

19

3.2.3 Ingress/Egress Filters
Packet filters are an integral part of a network’s logical organization and access control
policy. In this work, we consider the use of stateless ingress and egress packet filtering as
part of an access control policy. This sort of filtering ability is common in most modern
operating systems.

If u names an interface on device m in network D, then (D m).i f aces[u].i f ilter is a func-
tion mapping a header field to a set of values used in filtering incoming packets. Like-
wise, (D m).i f aces[u].e f ilter is a function mapping a header field to a set of values used
in filtering outgoing packets. For example, (D m).i f aces[u].i f ilter[dstip] is a set contain-
ing all IP addresses that, if matched to a packet’s destination IP address, will cause that
packet to be discarded. More formally, a packet p is filtered at interface u if p.dstip ∈
(D m).i f aces[u].i f ilter[dstip]. We may also write p.dstip /∈ (D m).i f aces[u].i f ilter[dstip]

to explicitly state that p will not be filtered. In addition to dstip, we use the field srcip for
source IP address filtering.

We also use srcport and dst port for filtering on transport-layer segments. In these fil-
ter sets, however, we also include the transport-layer protocol in the set to differentiate
between popular transport-layer protocols like Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). For example, we block transport-layer segments destined
for TCP port 80 with the statement (tcp,80) ∈ (D m).i f aces[u].i f ilter[dst port].

In addition to packet filters at the network and transport layer, filtering at the link layer
based on MAC address is also a common ability. Not only can we expect most modern
operating systems to be able to filter based on MAC address information, but we can also
expect switches to filter based on this information. Therefore, we use the sets srchw and
dsthw for this MAC filtering. Similar to packet filtering, we block a frame f based on
source MAC address by stating that f .srchw ∈ (D m).i f aces[u].i f ilter[srchw].

3.2.4 Transport-Layer Port Range
(Dm).portrange specifies the set of valid transport-layer port numbers on a device m in net-
work D. Based on TCP [30] and UDP [31] specifications, port numbers are 16-bit fields that
each correspond with 65,536 possible ports on an interface. Therefore, (D m).portrange

typically consists of these 65,536 different port numbers. Though this set is not typically

20

part of a network’s logical organization, we use it in the network semantics, which is de-
scribed later, to capture a client’s ability to assign a random valid port number to an outgo-
ing transport-layer segment.

3.3 Network Behavior
With network access control, we are concerned with controlling the flow of messages
throughout the network. If we want to control access to a particular server, then we should
focus on controlling traffic to and from that server. In order to do that, however, our model
must allow us to reason the logical organization influences that traffic. Furthermore, the
model must be simple enough to allow us to focus on the task of reasoning about access
control.

In general, our model achieves this by casting network behavior in terms of translating,
or rewriting, values between variables. A value corresponds with a datagram, also known
as a protocol data unit (PDU). The variables that can hold these values correspond with
network interfaces. These values are rewritten between variables according to the network
semantics. This section describes this model of network behavior in detail by describing the
datagram abstractions used as values, the network interface abstractions that take the form
of variables, and the network semantics that describes how translations of values between
these variables can occur.

3.3.1 Protocol Data Unit Values
Protocol data units (e.g., Ethernet frames, IP packets, and TCP segments) are represented
as values that can be assigned to variables and rewritten between variables. A value is a
string that serves as a simple representation of a PDU. It consists of information contained
in a datagram that is pertinent to access control. The following pseudo-grammar specifies
the values used in this thesis:

A ::= HTTP_RQ | HTTP_RS | HTTPS_RQ | HTTPS_RS | IRC_PRIVMSG

S ::= (protocol,srcport,dst port,A)

P ::= (srcip,dstip,S) | (srcip,dstip, ICMP)

F ::= (srchw,dsthw,P) | (srchw,dsthw,ARP)

21

The set A contains all application-layer messages. Though this set can be extensive, it is
confined to the values described above to help illustrate the basic concepts proposed in
this work. The set S contains all transport-layer segments, so the value s can represent a
segment, where s∈ S. Likewise, P contains all network-layer packets, so p∈ P represents a
packet. Finally, F contains all link-layer frames, so f ∈ F refers to a single frame. Header
information is represented using dot notation. For example, an IP packet p ∈ P has a
header with a source IP address p.srcip = 10.0.0.1 and a destination IP address p.dstip =

10.0.0.100. Encapsulated data is represented in a similar way. The packet p encapsulates a
TCP segment s ∈ S, so p.data = s. Likewise, an Ethernet frame f encapsulates p such that
f .data = p.

3.3.2 Interface Variables
Our model is built on assumptions that the network consists of several devices, each with
one of more network interfaces, and that each of those interfaces is directly connected to
one or more distinct interfaces via the physical layer. With this assumption, we can say
that each interface in the network is uniquely named and has two variables associated with
it: an ingress variable and an egress variable. A network interface v has an associated
ingress variable vi and an associated egress variable ve. Each variable can hold a value as
previously described.

Therefore, we can specify a notation for showing rewrites of values between variables using
the rewrite operation. Consider an example where we wish to show a rewrite of a packet
p from the egress variable associated with interface u to the ingress variable associated
with interface v. We formally represent this with (p,ue)→ (p,vi). Likewise, we show
encapsulation of a packet p within a frame f by the rewrite (p,ue)→ (f ,ue).

3.3.3 Network Semantics
We use a system of inference rules to codify commonly accepted network behavior (as
specified by Internet Engineering Task Force (IETF) requests for comment, IEEE stan-
dards, and other standards documents) as translations of values between variables. A
standards-based semantics for an IP network over Ethernet with the simplicity and granular-
ity required for our framework is given in a whitepaper [32] and reproduced in Appendix A.

22

By exploiting the transitive properties of the semantics, the system allows us to take service-
level availability requirements and determine constraints on the network to realize those
requirements and prove their availability. For example, the following rule captures require-
ments for frame transmission from an arbitrary device m to a non-switch device n:

switch /∈ (D n).type

f ∈ F

y ∈ (D m).i f aces[w].direct

m 6= n

f .dsthw = (D n).i f aces[y].hwaddr

f .srchw /∈ (D n).i f aces[y].i f ilter[srchw]

f .dsthw /∈ (D n).i f aces[y].i f ilter[dsthw]

D ` (f ,we)→ (f ,yi)

The transmission is represented as a translation of frame f at variable we to variable yi,
where w is an interface of m and y an interface of n. In order for this to occur, y must be
directly connected to w via the physical layer, the destination hardware address of f must
match the hardware address of y, and the frame must not be blocked by an ingress filter
at y. Those requirements are expressed in the antecedents of the rule above the horizontal
line. Below the line is the conclusion that, with respect to the network D, frame f at egress
variable we can be rewritten as a frame at ingress variable yi provided the conditions in the
antecedent of the rule are satisfied.

Note that this rule is actually a rule scheme because i f ilter is unspecified. A con-
crete definition of i f ilter produces a concrete semantics. Say, for example, we have
(D n).i f aces[y].i f ilter instantiated such that the following is true:

45:09:ED:3A:01:BB ∈ (D n).i f aces[y].i f ilter[srchw]

Therefore, the concrete semantics would prescribe that rewrites are impossible between
these two interfaces for frames having this source hardware address.

To further explain the how the network semantics captures knowledge of network behavior,
we contrast the previously mentioned rule, named (FRAME-TX-RX), with a rule that cap-

23

tures requirements for frame transmission from an arbitrary device m to a switch labeled n.
This rule, named (FRAME-TX-SWITCH-RX), is listed below:

switch ∈ (D n).type

f ∈ F

y ∈ (D m).i f aces[w].direct

m 6= n

f .srchw /∈ (D n).i f aces[y].i f ilter[srchw]

f .dsthw /∈ (D n).i f aces[y].i f ilter[dsthw]

D ` (f ,we)→ (f ,yi)

Notice here that (1) the stated conclusion is the same in each rule, (2) both rules require that
w directly connect to y, and (3) f not be filtered at y. Also notice that the (FRAME-TX-RX)
rule requires that n not be a switch and f .dsthw = (D n).i f aces[y].hwaddr. In contrast,
the (FRAME-TX-SWITCH-RX) rule states that this conclusion can also be derived if n is a
switch, without any need to check the destination address.

The network semantics given in Appendix A focuses exclusively on device protocol han-
dling. Links are not represented in any way. As SOAC is about controlling access to
services and not concerned with link bandwidth, information about links, other than their
existence, is absent. Also absent in the semantics is the handling of any protocol that could
influence logical organization (e.g. Routing Information Protocol (RIP), Open Shortest
Path First (OSPF), or Dynamic Host Configuration Protocol (DHCP)). An algorithm for
SOAC must have control over all such organization and allowing these kinds of protocols
to run in the network would undermine it.

24

CHAPTER 4:

Access Control Logic

A network semantics like the one described in Chapter 3 and listed in Appendix A codifies
commonly accepted network behavior in a system of inference rules. This system allows
us to infer the presence application-layer connectivity given a network’s topology. Each
conclusion reached in the semantics, which speaks in terms of rewrites allowed between
variables, represents the presence of some communications path between an application
running on a host and an application or service provided by a server. This is useful in
automatically generating constraints on a network configuration for the purpose of allowing
access to services on a network. However, the semantics does not address the issue of
denying access to services on a network.

We can develop a similar system that allows us to infer the absence of application-layer
connectivity as well. This system, which we call the access control logic, allows us to
reason about denying rewrites between variables such that each conclusion reached in the
logic represents the absence of all possible communications paths between an application
on a host and one on a server. Derivations in the semantics are existential in nature, where
a derivation in the semantics corresponds with allowing a single path through the network
between source and destination. In contrast, derivations in the logic are universal in nature,
where a derivation in the logic corresponds with denying all possible paths between source
and destination.

In order to achieve this, the logic uses an inductive approach to deriving conclusions. We
have a set of inference rules that resemble base cases, where one can infer a denied rewrite
of a frame or packet between two variables based solely on the network’s topology or logi-
cal organization. We also have a set of inference rules that resemble inductive steps. These
inductive steps allow us to take applications of basic rules, traverse the network’s topology,
and climb the network stack to infer negative rewrites of application-layer messages. We
also have the ability to make assumptions about negative rewrites between interface vari-
ables. These assumptions can be discharged in an inductive step by instrumenting access
control at another place in the network where they would be subsumed.

25

This chapter provides a detailed description of the access control logic developed in this
research. Section 4.1 describes the basic rules developed and therefore the instrumenta-
tion available using this approach. Section 4.2 describes the concept of assumptions as it
pertains to the access control logic, and how it provides flexibility in instrumenting the net-
work. Section 4.3 describes inductive rules based on the network’s topology. Section 4.4
describes inductive rules based on the network stack. Finally, Section 4.6 introduces the
concepts of soundness and completeness and how they apply to the access control logic.
The complete listing of inference rules in the access control logic is listed in Appendix B.

4.1 Basic Rules
The access control logic provides some inference rules that allow us to derive conclusions
about negative rewrites between variables using information contained in the network map-
ping. This information may be about the physical topology, like whether an interface is
directly connected to another interface, or about logical organization, such as whether a
filter contains a certain IP address. As with a derivation using the network semantics, a
derivation using the access control logic produces a constraint set that must be satisfied and
applied to the network to realize the desired conclusion. The constraints generated in such
a derivation are specifically generated with these basic rules.

Rules in the access control logic resemble rules in the network semantics. Take the follow-
ing rule, named (LINK-FILTER-DSTIP) as an example:

switch /∈ (D n).type

host /∈ (D n).type

p ∈ P

u ∈ (D m).i f aces

p.dstip ∈ (D n).i f aces[v].i f ilter[dstip]

m 6= n

D,A ` (p,ue) 6→ (p,vi)

The rule’s conclusion is stated below the horizontal line. All conclusions in the logic take
this form, where D is the network, A is the assumption set (to be introduced in Section 4.2),
p is the PDU value in question, ue is the interface variable serving as the source of the

26

rewrite, and vi is the destination variable. Requirements are expressed in the antecedents
of the rule above the horizontal line.

This section provides details about the basic rules developed in this work. We begin with
filter rules, which govern placement of packet filters in the network. We then describe
the (TERMINAL) rule, which provides some reasoning about terminal nodes. We then
describe address mismatch rules, which provide reasoning about denying rewrites based
on mismatches between a packet or frame destination address and an interface’s assigned
address. Finally, we describe a rule governing forwarding table entries.

4.1.1 Filter Rules
The logic contains several rules for denying rewrites between variables by installing ingress
or egress filters. These rules comprise the bulk of the basic rules defined in the logic.
Basically, the filter rules state that a rewrite can be denied if some part of the datagram,
specifically some piece of header information, is a member of a filter set on either the
source interface or the destination interface.

Filter rules are named intuitively so that a rule’s name identifies which piece of header
information is filtered. For example, the (LINK-FILTER-DSTIP) rule captures requirements
for denying a translation between variables by installing an ingress filter on the destination
interface that filters based on a packet’s destination IP address. This rule is listed above.

Notice the antecedents of the (LINK-FILTER-DSTIP) rule. They ensure that the destination
device is neither a switch nor a host. This is because a switch can only filter based on
frame header information, based on the provided network semantics, and because we do
not trust a host’s configuration to enforce access control. The rule also ensures that the
destination IP address of the packet p is contained in the destination interface’s ingress
filter set. Figure 4.1 graphically depicts this rule. An IP packet gets blocked upon ingress
at v. Notice that there is no specific relationship between u and v; the rule applies even with
multiple intermediate nodes between the interfaces.

Figure 4.1: Depiction of (link-filter-dstip) rule application

27

4.1.2 (TERMINAL) Rule

The (TERMINAL) rule addresses the relationship between a terminal node and some other
node in the network. It is the product of the following observation. The network semantics
says that a terminal node – usually an end host – will not forward a PDU back through the
interface through which it received the PDU. Therefore, if a device m directly connects
via interface u to a terminal device n through interface v, any PDU sent from u to v will
terminate at v. Therefore, the network’s physical topology is enough to allow us to derive a
conclusion about a negative rewrite from u to some other interface x. Since a PDU d from
u always terminates at v, we know that d will never reach x from u. Formally:

(D m).i f aces[u].direct = {v}
(D n).i f aces = {v}
v 6= x

D,A ` (d,ue) 6→ (d,xi)

Figure 4.2 depicts the application of this rule. Notice that any traffic egressing from u

terminates at v because there is no “U-turn” at v and because v is the only interface on n

(as stated in the rule’s second antecedent). Therefore, it is safe to say that traffic from u

will never arrive at x, which is somewhere else in the network. Indeed, traffic from other
interfaces on m may reach x, but that should be addressed elsewhere in the derivation. Our
concern here is specifically traffic from u.

Figure 4.2: Depiction of (terminal) rule application

28

4.1.3 Address Mismatch Rules
The logic includes several rules for denying rewrites based on address mismatches. These
rules basically codify the fact that a network interface on a device other than a switch or
router will not accept a PDU that is not addressed to that interface, which is expressed in the
network semantics. We do not consider “promiscuous” interfaces, but the semantics could
be extended with a promiscuous host interface, in which case deriving a negative outcome
for such an interface could not rely on address mismatch. These rules basically state that
we can deny rewriting a PDU to an interface’s ingress variable if the destination address of
the PDU does not match the interface’s address. We include a rule named (IP-ADDRESS)
for denying rewrites based on IP address mismatches and a rule named (HW-ADDRESS) for
MAC address mismatches. The (IP-ADDRESS) rule is listed below:

p ∈ P

u ∈ (D m).i f aces

p.dstip 6= (D n).i f aces[v].ipaddr

p.dstip 6= 255.255.255.255
router /∈ (D n).type

switch /∈ (D n).type

D,A ` (p,ue) 6→ (p,vi)

Several points should be explained here. First, we do not require m 6= n or any other specific
relationship between the devices or interfaces. As with the filter rules, this rule applies
even across multiple intermediate nodes. Second, this rule is unsound if n is a router,
hence the antecedent that n is not a router. Third, the rule is sound for limited broadcasts
(255.255.255.255) only. A more refined rule would be also sound for directed broadcasts
and would require checking the destination interface’s subnet mask. Finally, soundness is
mentioned here several times and is an important consideration throughout this system. We
discuss this more in Section 4.6.

4.1.4 (SUBNET) Rule
The (SUBNET) rule allows denying rewrites between interfaces on the same device based
on forwarding table entries. According to the network semantics, in order to route a packet

29

p from variable ui to ve on device n, p.dstip must match (D n).i f aces[v].dest. We leverage
this requirement and say that we can deny rewriting p from ui to ve across m if p.dstip does
not match (D n).i f aces[v].dest. This is formally captured below:

u,v ∈ (D n).i f aces

p ∈ P

(D n).i f aces[v].netmask = mask

p.dstip & mask 6= (D n).i f aces[v].dest

router ∈ (D n).type

D,A ` (p,ui) 6→ (p,ve)

Figure 4.3 depicts this rule’s application. Notice that p is not blocked as if we installed a
packet filter on the egress interface. Instead, p is simply not routed from u to v because
p.dstip does not match the destination network of v.

4.2 Assumptions
The basic rules allow us to derive conclusions about negative rewrites based on information
in the network mapping. For example, we can now deny a rewrite between two interface
variables by placing a packet filter at either the source or destination. However, with these
rules alone, we quickly see that our logic has a very limited ability to derive conclusions
about negative rewrites across an entire network. We need mechanisms to allow us to reason
about how applying these rules affects access control throughout the network. Furthermore,
we need mechanisms that allow us to leverage topology in ensuring access control.

Figure 4.3: Depiction of (subnet) rule application

30

One of these mechanisms is the idea of assumptions about negative rewrites. In many
cases, we find that we are obligated to prove a conclusion about a negative rewrite between
two interface variables but that the basic rules alone do not provide any desirable options
for doing so. In other words, we want to simply assume a negative rewrite so that we can
continue the derivation in order to find another way to meet that obligation. Assumptions,
when combined with the anti-forwarding rules that we introduce later, allow us the ability
to reason about access control throughout the entire network.

Assumptions take the same form as negative rewrite operations and are held in a set that is
carried through a derivation. For example, to state an assumption about a negative rewrite
of packet p from interface u on device m to interface v on device n, we simply state that
(p,ue) 6→ (p,vi) ∈ A.

To govern the use of assumptions in the logic, we provide two inference rules, (LINK-
ASSUMPTION) and (DEVICE-ASSUMPTION). The (LINK-ASSUMPTION) rule simply states
that we can derive a conclusion about a negative rewrite from an egress variable to an
ingress variable if that negative rewrite is in the assumption set. Formally:

(d,ue) 6→ (d,vi) ∈ A

D,A ` (d,ue) 6→ (d,vi)

Notice that we do not restrict assumptions based on the format of the PDU or on the rela-
tionship between the two interface variables. This allows us freedom to make assumptions
at any layer of the network stack and across any portion of the network. As we will see
later, this freedom will translate into similar freedom in instrumenting the network.

The (DEVICE-ASSUMPTION) rule provides similar reasoning about negative rewrites from
an ingress variable to an egress variable. This is used for assuming a negative rewrite
within a device whereas the (LINK-ASSUMPTION) rule is used for assuming a negative
rewrite across a link.

4.3 Anti-Forwarding Rules
With basic rules that govern how we actually instrument the network and with assumptions
that allow us to carry proof obligations further along in the derivation, we have what we

31

need to introduce the anti-forwarding rules. This set of rules allows us to reason inductively
about negative rewrites across the network. With these rules, we also introduce the concept
of discharging assumptions. By making an assumption, we create an obligation to reach
that conclusion elsewhere in the derivation. By discharging an assumption, therefore, we
instrument the network such that the obligation is rendered superfluous. Superfluous in this
case means that the proof obligation is no longer necessary because another conclusion has
been reached that subsumes that obligation.

The key to allowing us to reason about network-wide access control in this logic is the
understanding that we are free to choose where in the network to discharge the assumptions
that we make. Say we make assumption about a negative rewrite between a router and an
end host. We could discharge that assumption immediately by instrumenting the router. We
could also carry that assumption to an upstream router and instrument the network there in
such a way as to render the assumption superfluous. In this way, we have the freedom we
need to ensure access control throughout the network.

It is important to note that we must discharge all assumptions in a derivation before instru-
menting the network. Remember that conclusions in the access control logic are based on
both the network D and the assumption set A. If A is non-empty, there are proof obliga-
tions that have not been met. Consider a service specification in SOAC that includes the
negative rewrite (HT T P_RQ,ue) 6→ (HT T P_RQ,vi). Our goal, then, is to reach the con-
clusion D,A ` (HT T P_RQ,ue) 6→ (HT T P_RQ,vi), for some assumption set A. We begin
by making some assumptions about access control enforced at places in the network where
needed to advance the derivation but may be undesirable in practice to implement there.
These assumptions may be discharged upstream by virtue of network topology or by intro-
ducing access control at another place which subsumes them. In the latter case, they can
be discharged, however, new assumptions arise due to introducing new access control else-
where. In the end, A will contain assumptions that could not be discharged in the logic and
therefore must be discharged outside the logic through instrumenting the network as they
prescribe. This essentially produces a new network for which a derivation is now possible
that ends with an empty A.

In this section, we introduce three inference rules that govern this inductive reasoning based
on the network’s physical topology. First, we describe the (FWD) rule, which allows us

32

to carry assumptions across a router, a switch, or any type network bridge in order to
discharge them further upstream. Second, we describe the (LINK-FWD) rule, which allows
us to discharge certain assumptions at a network bridge by instrumenting the network at the

upstream link, specifically by applying a basic rule to that link. Finally, we introduce the
(DEVICE-FWD) rule, which governs discharging certain assumptions at a network bridge
by instrumenting the device itself.

4.3.1 (FWD) Rule
The (FWD) rule allows us to carry assumptions across across a device without instrument-
ing that device. In doing so, we pass those assumptions further upstream so that we can
meet those proof obligations elsewhere. Figure 4.4 shows a graphical depiction of this
rule’s application. Notice that we have an upstream device m with interface u that is di-
rectly connected to interface v of device n, which has three downstream interfaces w1, w2,
and w3. Suppose we want to prove that ue cannot rewrite some variable, say xi, which may
be reachable through w1, w2, or w3. For each downstream interface, we must first prove
a negative rewrite between its egress variable and xi (each depicted in the figure with a
dark red “X”). If we can say that none of these egress variables is able reach x1, even by
assumption, we can then say that the ue is not able to rewrite xi (depicted in the figure with
a bright red “X”). This rule is formally listed here:

v ∈ (D n).i f aces

(D m).i f aces[u].direct = {v}
∀w ∈ (D n).i f aces−{v}.D,A ` (d,we) 6→ (d,xi)

D,A ` (d,ue) 6→ (d,xi)

Notice that the assumption set A does not change as a result of this rule. This means that
any assumption made in reaching the conclusions involving the downstream interfaces will
be carried along and must be discharged elsewhere in the derivation.

4.3.2 (LINK-FWD) Rule
The (LINK-FWD) rule allows us to discharge assumptions at a device by instrumenting a
the network at the upstream link. By instrumenting the upstream link, we can consider all
proof obligations downstream to be superfluous. Figure 4.5 depicts this rule’s application.

33

Figure 4.4: Depiction of (fwd) rule application

The required topology is the same as in the (FWD) rule. As with the (FWD) rule, we also
reach the required conclusions about negative rewrites between the downstream interfaces
and the destination interface. In accomplishing this, we build an assumption set A∪ S.
Then, we instrument the upstream link and prove a corresponding negative rewrite. Any
assumptions required to do so are contained in the set A. Having done these things, we can
then discharge all assumptions in S. Formally:

v ∈ (D n).i f aces

(D m).i f aces[u].direct = {v}
∀w ∈ (D n).i f aces−{v}.D,A∪S ` (d,we) 6→ (d,xi)

D,A ` (d,ue) 6→ (d,vi)

D,A ` (d,ue) 6→ (d,xi)

34

Figure 4.5: Depiction of (link-fwd) rule application

4.3.3 (DEVICE-FWD) Rule
With the (DEVICE-FWD) rule, we discharge assumptions not by instrumenting the upstream
link but by instrumenting the device itself. We focus here on preventing rewrites across the
device, usually by either egress filtering or constraints on the device’s forwarding table.
Again, the required topology is the same as the previous two rules. Also, the required
assumptions involving downstream interfaces remain the same. Furthermore, we discharge
in a similar fashion. Figure 4.6 depicts the application of this rule, and it is stated below:

v ∈ (D n).i f aces

(D m).i f aces[u].direct = {v}
∀w ∈ (D n).i f aces−{v}.D,A∪S ` (d,we) 6→ (d,xi)

∀w ∈ (D n).i f aces−{v}.D,A ` (d,vi) 6→ (d,we)

D,A ` (d,ue) 6→ (d,xi)

35

Figure 4.6: Depiction of (device-fwd) rule application

The difference between the (LINK-FWD) rule is in the fourth antecedent, which requires
that we prove a negative rewrite from ingress variable vi to every downstream egress vari-
able on n.

4.4 Anti-Encapsulation Rules
With the combination of the basic rules, assumptions, and anti-forwarding rules, we have
a system that allows us to derive conclusions about negative rewrites across the entire net-
work. By using assumptions, we can choose where to instrument the network, and we can
use the anti-forwarding rules to block all possible paths from source to destination.

However, the access control logic is still limited in that these rules only allow for reasoning
about one particular layer of the network stack, usually a lower layer like the data-link or
network layer. Remember that our goal is to develop a system that allows us to connect
configuration at these lower levels to the uppermost layer where applications and services

36

reside. Therefore, we need a system that gives us freedom to traverse not only the network
topology but also the network stack.

To this end, the access control logic also provides inference rules that reason about negative
rewrites at lower layers of the network stack and how those rewrites affect negative rewrites
at higher layers. For example, the (HTTPS_RQ-ENCAP) rule governs the relationship be-
tween a negative rewrite of a HTTPS message and a negative rewrite of a TCP segment.
The rule is listed below:

s ∈ S

s.data = α

α = HT T PS_RQ

D,A ` (s,ue) 6→ (s,vi)

D,A ` (α,ue) 6→ (α,vi)

Notice that the rule establishes a relationship between the segment s and the HTTPS mes-
sage α . This relationship, where s.data=α , combined with the judgment that s at u cannot
be rewritten as s at v, allows us to say that α at u also cannot be rewritten as α at v.

The access control logic contains anti-encapsulation rules to connect the data-link layer,
network layer, transport layer, and application-layer protocols HTTPS and IRC. These
application-layer protocols are not special; others could be introduced. We present these as
representative protocols for the purpose of describing how applications are handled. Like
the example rule, each of the anti-encapsulation inference rules provide a negative rewrite
as a conclusion, a lower-layer negative rewrite as an antecedent, and some constraints that
codify the relationship between the two negative rewrites.

4.5 A Decision Procedure for the Logic
A decision procedure for the logic has the property that if a derivation exists for a negative
rewrite in the logic then the procedure will say “yes”, otherwise it will say “no”. To make
such a procedure efficient, it is important to guide the construction of derivations in the
logic as much as possible. The access control logic has been designed with this in mind.
Specifically, it is “syntax-directed” [33], [34].

The anti-forwarding rules are designed such that a derivation for a negative rewrite begins

37

at the destination and works its way back through the topology to the source. Consider
the (FWD) rule as an example. Its third antecedent requires judgments of the form D,A `
(d,we) 6→ (d,xi) in order to reach the conclusion D,A ` (d,ue) 6→ (d,xi), where w is on
a device that is topologically closer to x than the device containing u. In other words, if
we reach a conclusion of D,A ` (d,we) 6→ (d,xi), successive application of the (FWD) rule
(or any anti-forwarding rule) yields D,A ` (d,ue) 6→ (d,xi), where u is directly upstream
of w. In this rule and throughout the logic, we see that successive conclusions are derived
in terms of the same destination but in terms of incrementally more distant sources. This
makes the access control logic effectively syntax-directed.

While syntax-directedness guides construction, there still remains much latitude for the
decision procedure to choose from among many different derivations of the same negative-
rewrite conclusion. While it is somewhat useful to know that if a negative rewrite deduction
exists, a decision procedure can say so, we would like to know which instrumentations dif-
ferent derivations prescribe for the network. Ideally, a procedure would compute the “best”
derivation according to some heuristics governing network traffic, performance, forward-
ing table size, etc. Such a procedure is beyond the scope of this thesis and is an area of
future work.

4.6 Soundness and Completeness
There is a relationship between the access control logic and the semantics, and it is captured
by the notions of soundness and completeness of the logic [34], [35]. In general, soundness
and completeness describe how accurately a logical system represents reality. To say that a
logical system is sound is to say that, if a statement can be shown in the system, it is indeed
true in reality. Conversely, if any statement that holds in reality can be shown in the system,
the system is said to be complete. For our purpose, reality is the network semantics, which
codifies widespread, standards-based beliefs about how network devices behave.

We can express soundness of the access control logic in the following way. For any
negative rewrite of the form (d,ue) 6→ (d,vi) and for a given network D, if we derive
D,A ` (d,ue) 6→ (d,vi) in the logic, instrumenting D according to A (by apply basic rules
like filtering and subnetting) yields a network D′ such that the corresponding positive
rewrite (d,ue)→ (d,vi) cannot be derived in the semantics with respect to D′. Note that

38

if A is empty, D needs no instrumentation, and D′ = D. In other words, if we derive a
conclusion about a negative rewrite in the logic, the resulting instrumentation will render it
impossible to derive a conclusion about the corresponding positive rewrite in the semantics.
Ensuring the soundness of the access control logic is critical to ensuring effective access
control in the network.

Completeness says that, if there is a positive rewrite that is impossible to prove in the
network semantics, then there exists a derivation in the logic to reach a conclusion about
the corresponding negative rewrite. Completeness, for our purposes, is not as critical to
the effectiveness of the logic as is soundness. If the logic is not complete, it is simply not
leveraging all available capabilities to ensure access control. However, if the logic is not
sound, it is not considering all possible paths, thereby falsely asserting access control.

Here, it is important to reiterate that the logic’s soundness and completeness is measured
against the network semantics, not against current networking capabilities. Consider, for
example, an intrusion detection system (IDS) that operates in promiscuous mode, capturing
all network traffic traversing a link. If this behavior were defined in the network semantics,
then the address mismatch rules as written would be unsound because they falsely assert
negative rewrites. However, we do not capture this behavior in the network semantics used
in this thesis, so the behavior cannot be used to judge the logic as unsound.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

CHAPTER 5:

Scenarios

USMC doctrine [36], [37] specifies that a USMC field artillery battalion typically consists
of three firing batteries, each operating six 155-millimeter howitzers, and a headquarters
battery that provides command, control, and support for the unit. To facilitate command and
control, communications planners [38] typically establish a tactical data network through-
out the battalion.

Figure 5.1 depicts this typical network as deployed in operational environments. In this
typical network, each battery operates on a switched LAN that is connected to an IP router
and then to a radio transceiver. The battalion headquarters also operates on a switched LAN
that may contain some servers. When the battalion is operating as part of a larger unit, the
battalion headquarters will connect to that unit, and the battalion will use those services.
However, when the battalion is operating independently, the headquarters will provide the
necessary services.

In some cases, an Ethernet mesh may replace radio systems as the network’s backbone. A
battalion may use this approach in conducting digital communications exercises, where the
unit establishes this network test its digital command and control abilities. A battalion may
also take this approach if its firing batteries are located in close proximity.

Figure 5.2 depicts the physical topology of a typical field artillery battalion’s network with
an Ethernet mesh backbone. This network lends itself well to the SOAC framework for
two reasons. First, security requirements in this network are often fine-grained. By fine-
grained, we mean that two hosts on a LAN may require access to different services; one
host may be granted access to a server when another host on the same LAN may be denied
access to the same server. Second, security requirements are often expressed in terms of
services.

Take a battalion’s mission planning process as an example. A battalion commander often
expresses communications requirements in the following way. Some service will serve as
the primary means of command and control and these units will use it, some other service

41

Figure 5.1: Common Marine Corps �eld artillery battalion data network

will serve as the secondary means and these units will use it, and so on. The battalion
communications officer will then build a plan to support those requirements using the data
network. With SOAC, those requirements can be used directly as input for developing the
network configuration.

This chapter describes three scenarios where we use the SOAC framework to achieve an
access control strategy by systematically generating constraints on the network. In the first
scenario, we restrict access to the battalion’s SharePoint server to only hosts in the battalion
headquarters, showing how we take a simple service specification and apply our framework.
In the second scenario, we maintain the SharePoint server access restriction while granting
a host in Battery B access to the battalion’s IRC server, introducing conflicting derivations
that we resolve. Finally, we adjust the topology and introduce a service specification with
an unresolvable conflict to show how our approach handles such a case.

5.1 First Scenario: Basic Use
Let D represent the network depicted in Figure 5.2. Consider a scenario where we must
limit SharePoint access to hosts in the battalion headquarters. More specifically, we must

42

Figure 5.2: Physical network topology for common Marine Corps �eld artillery battalion data
network

ensure that all hosts located in the battalion headquarters – namely, bn_co, bn_xo, bn_s2,
bn_s3, and bn_s4 – can access the SharePoint server, and we must deny access to all other
hosts in the network.

This requirement translates to several conclusions to be derived using either the network
semantics or the access control logic. These conclusions are listed in Figure 5.3. We
look at two of these desired outcomes in detail. First, we consider the desired conclu-
sion D ` (HT T PS_RQ,bn_co_ethe)→ (HT T PS_RQ,bn_htt ps_ethi), which we use the
network semantics to derive. Second, we consider D, /0 ` (HT T PS_RQ,a_co_ethe) 6→
(HT T PS_RQ,bn_htt ps_ethi), which we use the access control logic to derive.

43

D ` (HT T PS_RQ,bn_co_ethe)→ (HT T PS_RQ,bn_htt ps_ethi)

D ` (HT T PS_RQ,bn_xo_ethe)→ (HT T PS_RQ,bn_htt ps_ethi)

D ` (HT T PS_RQ,bn_s2_ethe)→ (HT T PS_RQ,bn_htt ps_ethi)

D ` (HT T PS_RQ,bn_s3_ethe)→ (HT T PS_RQ,bn_htt ps_ethi)

D ` (HT T PS_RQ,bn_s4_ethe)→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,a_co_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,a_xo_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,a_bg_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,b_co_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,b_xo_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,b_bg_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,c_co_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,c_xo_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

D, /0 ` (HT T PS_RQ,c_bg_ethe) 6→ (HT T PS_RQ,bn_htt ps_ethi)

. . .

Figure 5.3: Service speci�cation excerpt, �rst scenario

5.1.1 Positive Derivation

Consider the first desired conclusion, where an HTTPS request leaving from the battalion
commander’s host should translate to an HTTPS request arriving at the battalion’s Share-
Point server. The required derivation involves searching the network semantics for a path
from the source incrementally through the network to the destination and then using the
transitive property of the rewrite operation to reach the intended conclusion.

The derivation begins at the source with the (HTTPS_RQ-ENCAP) rule:

s1 = (γ1,γ2,γ3,a)

a = HT T PS_RQ

γ1 = tcp

γ2 ∈ (D bn_co).portrange

D ` (a,bn_co_ethe)→ (s1,bn_co_ethe)

In applying this rule and reaching this conclusion, we generate some constraints on D that
are necessary to allow the rewrite to occur. For example, host ∈ (D bn_co).type must be
satisfied to reach this conclusion. As a result, fresh variables s1, a, γ1, γ2, and γ3 are

44

generated. The derivation continues with the (PACKET-ENCAP) rule:

p1 = (γ4,γ5,s1)

γ6 = (D bn_co).i f aces[bn_co_eth].netmask

γ5 & γ6 = (D bn_co).i f aces[bn_co_eth].dest

γ4 = (D n).i f aces[w].ipaddr

γ4 /∈ (D bn_co).i f aces[bn_co_eth].e f ilter[srcip]

γ5 /∈ (D bn_co).i f aces[bn_co_eth].e f ilter[dstip]

D ` (s1,bn_co_ethe)→ (p1,bn_co_ethe)

We generate more constraints on D as we reach this conclusion. We also generate more
fresh variables (i.e., p1, γ4, γ5, and γ6). At this point, we also see constraints on the log-
ical organization of D. For example, we constrain (D bn_co).i f aces[bn_co_eth].netmask,
which corresponds with the subnet mask of the interface bn_co_eth.

The derivation continues in this way, where we search for a path from the source incre-
mentally through the network to the destination. For the sake of brevity, several steps are
omitted here. As the derivation progresses, we generate more constraints. At the destina-
tion, the (HTTPS_RQ-DECAP) rule applies:

γ2 = 443

D ` (s1,bn_htt ps_ethi)→ (a,bn_htt ps_ethi)

Upon reaching the destination, we see the transitive property of the rewrite operation help
reach the final conclusion. The (TRANS) is used for this purpose:

D ` (p1,bn_htt ps_ethi)→ (s1,bn_htt ps_ethi)

D ` (s1,bn_htt ps_ethi)→ (a,bn_htt ps_ethi)

D ` (p1,bn_htt ps_ethi)→ (a,bn_htt ps_ethi)

The (TRANS) rule essentially connects the individual conclusions together. Both premises
used here are conclusions reached earlier. Also, notice that no new constraints are generated
after applying the (TRANS) rule. This is expected since we are simply using the transitive

45

property of the rewrite operation to complete the derivation. We continue with successive
applications of the (TRANS) rule, working backward from the destination to the source,
until we are able to derive our desired conclusion:

D ` (a,bn_co_ethe)→ (s1,bn_co_ethe)

D ` (s1,bn_co_ethe)→ (a,bn_htt ps_ethi)

D ` (a,bn_co_ethe)→ (a,bn_htt ps_ethi)

With this derivation, we effectively prove, based on the network semantics, that the bat-
talion commander’s host can send an HTTPS request to the SharePoint server. Several
constraints on D are generated as a result. The complete set of constraints from the deriva-
tion is listed in Figure 5.4. By satisfying these constraints, we can produce a constrained
D that corresponds with a logical organization that can be applied to the network’s devices.
This logical organization can realize our service-level goals.

5.1.2 Negative Derivation
Now consider the second desired conclusion, where an HTTPS request leaving from the
Battery A commander’s host must not translate to an HTTPS request at the battalion’s
SharePoint server. Note that D has already been constrained as a result of the previous
derivation.

We begin at the destination and work our way back to the source. We also choose to focus
on the bn_router device for any instrumentation. Therefore, we use the (ASSUMPTION)
rule to eliminate any instrumentation needs downstream of bn_router:

p2 = (γ9,γ10,s2)

A1 = {(p2,bn_router_eth0e) 6→ (p2,bn_htt ps_ethi)}
D,A1∪A2∪A3∪A4∪A5 ` (p2,bn_router_eth0e) 6→ (p2,bn_htt ps_ethi)

A2 = {(p2,bn_router_eth2e) 6→ (p2,bn_htt ps_ethi)}
D,A1∪A2∪A3∪A4∪A5 ` (p2,bn_router_eth2e) 6→ (p2,bn_htt ps_ethi)

A3 = {(p2,bn_router_eth3e) 6→ (p2,bn_htt ps_ethi)}
D,A1∪A2∪A3∪A4∪A5 ` (p2,bn_router_eth3e) 6→ (p2,bn_htt ps_ethi)

46

a = HT T PS_RQ

s1 = (γ1,γ2,γ3,a)

γ1 = tcp

γ2 ∈ (D bn_co).portrange

p1 = (γ4,γ5,s1)

γ6 = (D bn_co).i f aces[bn_co_eth].netmask

γ5 & γ6 = (D bn_co).i f aces[bn_co_eth].dest

γ4 = (D bn_co).i f aces[bn_co_eth].ipaddr

γ4 /∈ (D bn_co).i f aces[bn_co_eth].e f ilter[srcip]

γ5 /∈ (D bn_co).i f aces[bn_co_eth].e f ilter[dstip]

f1 = (γ7,γ8, p1)

γ7 = (D bn_co).i f aces[bn_co_eth].hwaddr

γ7 /∈ (D bn_co).i f aces[bn_co_eth].e f ilter[srchw]

γ8 /∈ (D bn_co).i f aces[bn_co_eth].e f ilter[dsthw]

γ7 /∈ (D bn_switch).i f aces[bn_switch_eth7].i f ilter[srchw]

γ8 /∈ (D bn_switch).i f aces[bn_switch_eth7].i f ilter[dsthw]

γ7 /∈ (D bn_switch).i f aces[bn_switch_eth5].e f ilter[srchw]

γ8 /∈ (D bn_switch).i f aces[bn_switch_eth5].e f ilter[dsthw]

γ8 = (D bn_htt ps).i f aces[bn_htt ps_eth].hwaddr

γ7 /∈ (D bn_htt ps).i f aces[bn_htt ps_eth].i f ilter[srchw]

γ8 /∈ (D bn_htt ps).i f aces[bn_htt ps_eth].i f ilter[dsthw]

γ4 /∈ (D bn_htt ps).i f aces[bn_htt ps_eth].i f ilter[srcip]

γ5 /∈ (D bn_htt ps).i f aces[bn_htt ps_eth].i f ilter[dstip]

γ4 = (D bn_htt ps).i f aces[bn_htt ps_eth].ipaddr

(γ1,γ2) /∈ (D bn_htt ps).i f aces[bn_htt ps_eth].i f ilter[srcport]

(γ1,γ3) /∈ (D bn_htt ps).i f aces[bn_htt ps_eth].i f ilter[dst port]

γ2 = 443

Figure 5.4: Result of positive derivation, �rst scenario

Notice that we assume negative conclusions about negative rewrites from every interface on
bn_router to bn_htt ps_eth except from bn_router_eth1, which is directly connected to the
upstream a_router_eth1 interface. This prepares us to apply the inductive (DEVICE-FWD)
rule to bn_router. The (DEVICE-FWD) rule requires us to reach conclusions about negative
rewrites from every egress variable on a device, except the variable associated with the up-
stream interface. It then requires us to reach conclusions about negative rewrites between
the interfaces on the bn_router device. We use rules like (DEVICE-FILTER-DSTIP), which
introduces a packet filter matching a packet’s destination IP address, and (SUBNET), which
constrains the device’s forwarding table. Once we reach a conclusion about a negative
rewrite between two of these interfaces, we then apply the rule to discharge the appropri-

47

ate assumptions as superfluous. This part of the derivation begins with application of the
(SUBNET) rule in order to discharge A2:

γ11 = (D bn_router).i f aces[bn_router_eth2].netmask

γ10 & γ11 6= (D bn_router).i f aces[bn_router_eth2].dest

D,A4∪A5 ` (p2,bn_router_eth1i) 6→ (p2,bn_router_eth2e)

Notice that constraints on the device’s forwarding table appear here. These constraints,
when satisfied, will be used to instrument D. We use the (SUBNET) rule again to help
discharge A3. This leaves A1, which is treated with the (DEVICE-FILTER-DSTIP) rule:

γ10 ∈ (D bn_router).i f aces[bn_router_eth0].e f ilter[dstip]

D,A4∪A5 ` (p2,bn_router_eth1i) 6→ (p2,bn_router_eth0e)

We have now reached all conclusions required by the (DEVICE-FWD) rule. This rule is
applied to discharge assumptions A1, A2, and A3, allowing us to continue the derivation
further upstream. We apply the rule here:

D,A1∪A2∪A3∪A4∪A5 ` (p2,bn_router_eth0e) 6→ (p2,bn_htt ps_ethi)

D,A1∪A2∪A3∪A4∪A5 ` (p2,bn_router_eth2e) 6→ (p2,bn_htt ps_ethi)

D,A1∪A2∪A3∪A4∪A5 ` (p2,bn_router_eth3e) 6→ (p2,bn_htt ps_ethi)

D,A4∪A5 ` (p2,bn_router_eth1i) 6→ (p2,bn_router_eth0e)

D,A4∪A5 ` (p2,bn_router_eth1i) 6→ (p2,bn_router_eth2e)

D,A4∪A5 ` (p2,bn_router_eth1i) 6→ (p2,bn_router_eth3e)

D,A4∪A5 ` (p2,a_router_eth1e) 6→ (p2,bn_htt ps_ethi)

At this point, we find that the packet p2 cannot be rewritten from interface a_router_eth1
to bn_htt ps_eth. In effect, we block every path through the network for this packet to travel
from a_router_eth1 to bn_htt ps_eth.

In this scenario, however, there are other paths from the source to the destination. These
paths must be blocked as well, so we continue the derivation. We treat a_router with a
similar strategy as before. First, we make some assumptions as we did previously. Second,

48

we apply rules that introduce an instrumentation on the target device. Third, we apply an
anti-forwarding rule to discharge the appropriate assumptions. This strategy allows us to
reach the conclusion D, /0 ` (p2,a_switch_eth0e) 6→ (p2,bn_htt ps_ethi).

At this point, the (TERMINAL) rule becomes useful. We use the rule to reach negative
conclusions about devices on the same LAN as the source by showing that each port on
a_switch terminates with a device that is not the destination. We apply the rule to all
interfaces on the switch besides the interface connected to a_co to prepare for using the
(FWD) rule. Recall that we must reach conclusions about negative rewrites from all egress
variables on the target device to the destination. Having accomplished this with the (TER-
MINAL) rule, the derivation continues by applying the (FWD) rule:

D, /0 ` (p2,a_switch_eth0e) 6→ (p2,bn_htt ps_ethi)

D, /0 ` (p2,a_switch_eth1e) 6→ (p2,bn_htt ps_ethi)

D, /0 ` (p2,a_switch_eth3e) 6→ (p2,bn_htt ps_ethi)

D, /0 ` (p2,a_switch_eth4e) 6→ (p2,bn_htt ps_ethi)

D, /0 ` (p2,a_switch_eth5e) 6→ (p2,bn_htt ps_ethi)

D, /0 ` (p2,a_co_ethe) 6→ (p2,bn_htt ps_ethi)

Therefore, we can successfully derive the conclusion that, given only the mapping D, the
packet p2 at a_co_eth cannot be rewritten as p2 at bn_htt ps_eth. However, we need to
reach a conclusion in terms of the application-layer HT T PS_RQ. Therefore, we continue
the derivation using the (SEG-ENCAP) and (HTTPS_RQ-ENCAP) rules to arrive at the fi-
nal conclusion of D, /0 ` (a,a_co_ethe) 6→ (a,bn_htt ps_ethi). Now, similar to the positive
case, we show that, given only the mapping D, the message HT T P_RQ at a_co_eth cannot
be rewritten as HT T P_RQ at bn_htt ps_eth. In plain English, we show that the battery
commander’s host cannot send an HTTPS request to the SharePoint server. Several con-
straints are generated as a result and are listed in Figure 5.5. By combining this set with
the one generated in the positive derivation, we will have a constraint set whose satisfying
substitution will allow us to configure the network to realize both the positive and negative
service-level goals.

49

p2 = (γ9,γ10,s2)

A1 = {(p2,bn_router_eth0e) 6→ (p2,bn_htt ps_ethi)}
A2 = {(p2,bn_router_eth2e) 6→ (p2,bn_htt ps_ethi)}
A3 = {(p2,bn_router_eth3e) 6→ (p2,bn_htt ps_ethi)}
γ11 = (D bn_router).i f aces[bn_router_eth2].netmask

γ10 & γ11 6= (D bn_router).i f aces[bn_router_eth2].dest

γ12 = (D bn_router).i f aces[bn_router_eth3].netmask

γ10 & γ12 6= (D bn_router).i f aces[bn_router_eth3].dest

γ10 ∈ (D bn_router).i f aces[bn_router_eth0].e f ilter[dstip]

A4 = {(p2,a_router_eth2e) 6→ (p2,bn_htt ps_ethi)}
A5 = {(p2,a_router_eth3e) 6→ (p2,bn_htt ps_ethi)}
γ13 = (D a_router).i f aces[a_router_eth2].netmask

γ10 & γ13 6= (D a_router).i f aces[a_router_eth2].dest

γ14 = (D a_router).i f aces[a_router_eth2].netmask

γ10 & γ14 6= (D a_router).i f aces[a_router_eth3].dest

γ10 = (D bn_htt ps).i f aces[bn_htt ps_eth].ipaddr

s2 = (γ15,γ16,γ17,a)

γ15 = tcp

γ17 = 443

a = HT T PS_RQ

Figure 5.5: Result of negative derivation, �rst scenario

5.2 Second Scenario: Resolvable Conflicts
Consider another scenario where, though firing battery commanders are denied access to
the battalion’s SharePoint server, they are allowed access to the IRC server for tactical chat
and messaging. Though we must derive several conclusions to meet this requirement, we
look at only two in order to illustrate the approach. First, we consider the desired positive
conclusion D ` (IRC_MSG,b_co_ethe)→ (IRC_PRIV MSG,bn_irc_ethi), which we de-
rived with the network semantics. Second, we consider D, /0 ` (HT T PS_RQ,b_co_ethe) 6→
(HT T PS_RQ,bn_htt ps_ethi), which derive with the access control logic.

5.2.1 Positive Derivation
Consider the first desired conclusion; we seek to show that an IRC private message at the
Battery B commander’s host would translate to an IRC private message at the battalion’s
chat server. Our approach here is similar to our approach in the previous scenario. We
begin at the source and work our way to the destination.

50

The derivation specifically begins with the (IRC_PRIVMSG-ENCAP) rule:

a1 = IRC_PRIV MSG

s1 = (γ1,γ2,γ3,a1)

γ1 = tcp

γ2 ∈ (D b_co).portrange

D ` (a1,b_co_ethe)→ (s1,b_co_ethe)

The derivation continues here similar to the positive derivation in the previous example. In
this scenario, however, our path takes us to the device b_router. To show the routing of the
IP packet across this router, we apply the (ROUTER) rule:

γ9 = (D b_router).i f aces[b_router_eth2].netmask

γ5 6= 255.255.255.255
γ5 6= ¬γ9 | (D b_router).i f aces[b_router_eth2].dest

γ5 & γ9 = (D b_router).i f aces[b_router_eth2].dest

γ4 /∈ (D b_router).i f aces[b_router_eth2].e f ilter[srcip]

γ5 /∈ (D b_router).i f aces[b_router_eth2].e f ilter[dstip]

D ` (p1,b_router_eth0i)→ (p1,b_router_eth2e)

Notice here that several constraints are placed on subnet mask, destination IP address, and
forwarding table. These constraints, when satisfied, ensure that the router forwards the
packet based on matching network prefix to the appropriate interface.

With respect to the network topology, we find ourselves now inside the network’s Ethernet
backbone. Our derivation, however, continues in the familiar way, with encapsulations
followed by transmissions followed by decapsulations. We apply the (ROUTER) rule again
once we reach the battalion’s router, and then we continue through the battalion’s LAN.

Having reached our destination, the device bn_irc, we begin to apply rules to decapsu-
late the frame. We begin with the (FRAME-DECAP) rule and conclude by applying the

51

(IRC_PRIVMSG-DECAP) rule:

γ3 = 6667

D ` (s1,bn_irc_ethi)→ (a1,bn_irc_ethi)

Similar to the previous scenario, the derivation continues backward toward the source
with the (TRANS) rule successively applied until we reach the ultimate conclusion of
D ` (a1,b_co_ethi)→ (a1,bn_irc_ethi). Again, we use this derivation to prove that an
IRC private message can be sent from the Battery B commander’s host to the battalion’s
chat server.

In doing so, we generate more constraints to apply to the mapping D. Our constraint set
here is much larger than the set generated in the previous scenario, due to the increased
length of the path through the network. Figure 5.6 shows a portion of the constraint set. A
satisfying substitution can then be applied to the network’s devices to realize our service-
level goals here.

5.2.2 Negative Derivation
Now consider the second desired conclusion, where the battery commander should not have
access to the battalion’s SharePoint server. We take an approach similar to the approach in
the previous scenario. We begin at the destination and work our way back to the source.

In this scenario, though, we decide to focus on the device b_router for instrumenting the
network. We begin by making assumptions about connectivity between bn_htt ps_eth and
the interfaces of b_router. We use the (ASSUMPTION) rule to declare three assumptions
like the following:

p2 = (γ15,γ16,s2)

A1 = (p2,b_router_eth2e) 6→ (p2,bn_htt ps_ethi)

D,A1∪A2∪A3 ` (p2,b_router_eth2e) 6→ (p2,bn_htt ps_ethi)

We decide to leverage the (LINK-FWD) rule to discharge all three assumptions at once.
In order to do that, we introduce constraints on the link directly upstream from the

52

a1 = IRC_PRIV MSG

s1 = (γ1,γ2,γ3,a1)

γ1 = tcp

. . .

γ8 = (D b_router).i f aces[b_router_eth0].hwaddr

γ7 /∈ (D b_router).i f aces[b_router_eth0].i f ilter[srchw]

γ8 /∈ (D b_router).i f aces[b_router_eth0].i f ilter[dsthw]

. . .

(γ1,γ2) /∈ (D bn_irc).i f aces[bn_irc_eth].i f ilter[srcport]

(γ1,γ2) /∈ (D bn_irc).i f aces[bn_irc_eth].i f ilter[dst port]

γ3 = 6667

Figure 5.6: Excerpt of fresh variables generated during positive derivation, second scenario

router. Specifically, we decide to introduce MAC address filtering on the router’s inter-
face b_router_eth0, which is connected to the Battery B LAN. We therefore apply the
(LINK-FILTER-DSTHW) rule:

f4 = (γ17,γ18, p2)

γ18 ∈ (D b_router).i f aces[b_router_eth0].i f ilter[dsthw]

D, /0 ` (f4,b_switch_eth0e) 6→ (f4,b_router_eth0i)

We then apply the (PKT-ENCAP) rule, which is what we need in order to apply the (LINK-
FWD) rule to discharge the assumptions:

D,A1∪A2∪A3 ` (p2,b_router_eth1e) 6→ (p2,bn_htt ps_ethi)

D,A1∪A2∪A3 ` (p2,b_router_eth2e) 6→ (p2,bn_htt ps_ethi)

D,A1∪A2∪A3 ` (p2,b_router_eth3e) 6→ (p2,bn_htt ps_ethi)

D, /0 ` (p2,b_switch_eth0e) 6→ (p2,b_router_eth0i)

D, /0 ` (p2,b_switch_eth0e) 6→ (p2,bn_htt ps_ethi)

Inside the Battery B LAN, we use the same strategy as the one in the previous scenario.
The (TERMINAL) rule is used to show negative conclusions about the other devices on
the LAN. Doing this allows us to continue the derivation and reach a conclusion about a
negative rewrite between the source and destination. By using the (FWD) rule, we reach

53

p2 = (γ15,γ16,s2)

A1 = (p2,b_router_eth2e) 6→ (p2,bn_htt ps_ethi)

A2 = (p2,b_router_eth1e) 6→ (p2,bn_htt ps_ethi)

A3 = (p2,b_router_eth3e) 6→ (p2,bn_htt ps_ethi)

f4 = (γ17,γ18, p2)

γ18 ∈ (D b_router).i f aces[b_router_eth0].i f ilter[dsthw]

γ18 = (D b_router).i f aces[b_router_eth0].hwaddr

γ16 = (D bn_htt ps).i f aces[bn_htt ps_eth].ipaddr

s2 = (γ19,γ20,γ21,a2)

γ19 = tcp

γ21 = 443

a2 = HT T PS_RQ

Figure 5.7: First attempt, negative derivation, second scenario

the conclusion D, /0 ` (p2,b_co_ethe) 6→ (p2,bn_htt ps_ethi). We continue by using the
(SEG-ENCAP) and (HTTPS_RQ-ENCAP) rules to arrive at the final conclusion of D, /0 `
(a2,b_co_ethe) 6→ (a2,bn_htt ps_ethi).

We find that this derivation generates constraints that contradict those generated in the
positive derivation. By using unification, we find that the negative derivation yields the
following constraint:

(D b_router).i f aces[b_router_eth0].hwaddr

∈ (D b_router).i f aces[b_router_eth0].i f ilter[dsthw]

This contradicts a constraint generated in the positive derivation:

(D b_router).i f aces[b_router_eth0].hwaddr

/∈ (D b_router).i f aces[b_router_eth0].i f ilter[dsthw]

It is clear, therefore, that the union of these two sets is unsatisfiable.

We know by intuition that this conflict can be resolved by trying a different derivation
to reach the second conclusion. We can focus our efforts on a different device besides
b_router by adjusting our assumptions, or we can simply adjust our instrumentation. We
choose to adjust the instrumentation by filtering based on IP address rather than MAC

54

address.

We restart our derivation, following the same strategy as before. We use the (LINK-FILTER-
DSTIP) on b_router before applying (LINK-FWD):

γ16 ∈ (D b_router).i f aces[b_router_eth0].i f ilter[dstip]

D, /0 ` (p2,b_switch_eth0e) 6→ (p2,b_router_eth0i)

The derivation continues as before, eventually reaching the final conclusion. The result
is listed in Figure 5.8. By inspection, we find that our conflict is resolved. The union of
these two sets will result in a satisfiable constraint set, one whose satisfying substitution
will allow us to configure the network to realize both the positive and negative service-level
goals.

5.3 Third Scenario: Unresolvable Conflicts
In the previous scenarios, we successfully applied the SOAC approach to generate con-
straints on a network configuration for realizing service-level goals. In the first scenario,
we did this without any conflict between our positive derivation and our negative deriva-
tion. In the second scenario, we found that, after completing the positive derivation, our
first attempt at the negative derivation created a conflict and an unsatisfiable constraint set.
We addressed this conflict in our second attempt at the negative derivation. We adjusted
our instrumentation of the network, and we resolved the conflict.

We now introduce a scenario that presents an unresolvable conflict between positive and
negative derivations. We adjust the network topology to correspond with the network in
Figure 5.9. One physical device, bn_server, is providing both the SharePoint and IRC
services for the network, which consists of a single router and two hosts, c_co and c_xo,
connected via a switch. In order to access each service, hosts will send messages to the
same interface – and therefore the same IP address – but to different ports. In this scenario,
we must grant SharePoint access to the Battery C commander’s host and IRC access to the
Battery C executive officer’s host. We must also deny SharePoint access to the executive
officer’s host and deny IRC access to the commander’s host.

55

A1 = (p2,b_router_eth2e) 6→ (p2,bn_htt ps_ethi)

A2 = (p2,b_router_eth1e) 6→ (p2,bn_htt ps_ethi)

A3 = (p2,b_router_eth3e) 6→ (p2,bn_htt ps_ethi)

p2 = (γ15,γ16,s2)

γ16 ∈ (D b_router).i f aces[b_router_eth0].i f ilter[dstip]

γ16 = (D bn_htt ps).i f aces[bn_htt ps_eth].ipaddr

s2 = (γ17,γ18,γ19,a2)

γ17 = tcp

γ19 = 443

a2 = HT T PS_RQ

Figure 5.8: Second attempt, negative derivation, second scenario

Figure 5.9: Physical topology of example network with single server

5.3.1 Positive Derivations
As with the previous scenarios, we begin by pursuing the positive conclusions. Here,
we first derive D ` (HT T PS_RQ,c_co_ethe)→ (HT T PS_RQ,bn_server_ethi). In plain
English, we seek to show that the Battery C commander’s host can access the bat-
talion’s SharePoint service. Second, we derive D ` (IRC_PRIV MSG,c_xo_ethe) →
(IRC_PRIV MSG,bn_server_ethi). In plain English, we then seek to show that the Bat-
tery C executive officer’s host can access the battalion’s IRC service.

Our strategy here is to search the network semantics for a rule to help us incrementally

56

derive the final conclusion. We begin by applying the (HTTPS_RQ-ENCAP) rule:

a1 = HT T PS_RQ

s1 = (γ1,γ2,γ3,a1)

γ1 = tcp

γ2 ∈ (D c_co).portrange

D ` (a1,c_co_ethe)→ (s1,c_co_ethe)

The derivation continues in this way, similar to the previous scenarios, until we reach the
destination and apply the (HTTPS_RQ-DECAP) rule:

γ3 = 443

D ` (s1,bn_server_ethi)→ (a1,bn_server_ethi)

Using the (TRANS) rule, we finally reach the desired conclusion:

D ` (a1,c_co_ethi)→ (s1,c_co_ethi)

D ` (s1,c_co_ethi)→ (a1,bn_server_ethi)

D ` (a1,c_co_ethi)→ (a1,bn_server_ethi)

Having completed this derivation, we can prove the first part of our desired positive out-
comes. We continue to derive the second desired conclusion, that the Battery C executive
officer’s host can access the battalion’s IRC service. We complete this derivation in a man-
ner very similar to the first derivation. Figure 5.10 shows an excerpt of the results of the
derivations.

5.3.2 Negative Derivations
Having completed the positive derivations, we now pursue the negative derivations. How-
ever, we cannot derive the first desired conclusion without creating a conflict with a con-
straint generated in one of the positive derivations. We conduct an exhaustive search for
a derivation in the access control logic and find that one does not exist. Described here is
one attempt at the link layer of the network stack, one attempt at the network layer, and one
attempt at the transport layer.

57

a1 = HT T PS_RQ

s1 = (γ1,γ2,γ3,a1)

γ1 = tcp

. . .

(γ1,γ2) /∈ (D bn_server).i f aces[bn_server_eth].i f ilter[srcport]

(γ1,γ2) /∈ (D bn_server).i f aces[bn_server_eth].i f ilter[dst port]

γ3 = 443

a2 = IRC_PRIV MSG

s2 = (γ15,γ16,γ17,a2)

γ15 = tcp

. . .

(γ15,γ16) /∈ (D bn_server).i f aces[bn_server_eth].i f ilter[srcport]

(γ15,γ16) /∈ (D bn_server).i f aces[bn_server_eth].i f ilter[dst port]

γ17 = 6667

Figure 5.10: Excerpt of fresh variables generated during positive derivations, third scenario

Link Layer

In this attempt, we decide to focus on MAC filtering at the device bn_router. We begin
by making an assumption about connectivity between bn_router and bn_server. We then
apply the (LINK-FILTER-DSTHW) and (PKT-ENCAP) rules for instrumentation:

γ21 ∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[srchw]

D, /0 ` (f4,c_switch_eth0e) 6→ (f4,bn_router_eth0i)

D, /0 ` (f4,c_switch_eth0e) 6→ (f4,bn_router_eth0i)

D, /0 ` (p2,c_switch_eth0e) 6→ (p2,bn_router_eth0i)

The assumption is discharged using the (LINK-FWD) rule:

D,A1 ` (p2,bn_router_eth1e) 6→ (p2,bn_server_ethi)

D, /0 ` (p2,c_switch_eth0e) 6→ (p2,bn_router_eth0i)

D, /0 ` (p2,c_switch_eth0e) 6→ (p2,bn_server_ethi)

From here, we use the (TERMINAL) rule to reach back to the source, and then we apply the
encapsulation rules (SEG-ENCAP) and (IRC_PRIVMSG-ENCAP) to complete the derivation.
The result is shown in Figure 5.11.

58

A1 = (p2,bn_router_eth1e) 6→ (p2,bn_server_ethi)

γ21 ∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[srchw]

Figure 5.11: First attempt, negative derivation, third scenario

As expected, this derivation generates a constraint that contradicts one generated in the
positive derivation. By using unification, we find that our negative derivation yields the
following:

(D c_xo).i f aces[c_xo_eth].hwaddr

∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[srchw]

This contradicts the following constraint generated in the positive derivations:

(D c_xo).i f aces[c_xo_eth].hwaddr

/∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[srchw]

A similar conflict arises after every attempt to introduce MAC filtering. We must move on
to instrumentation at the network layer.

Network Layer

In this attempt, we focus on IP packet filtering as the means of instrumentation, specifi-
cally at bn_router again. We begin by making an assumption about connectivity between
bn_router and bn_server at the network layer. Our instrumentation choice calls for the
(LINK-FILTER-DSTIP) rule:

γ19 ∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[dstip]

D, /0 ` (p2,c_switch_eth0e) 6→ (p2,bn_router_eth0i)

We discharge our assumptions with the (LINK-FWD) rule and then complete the derivation
as we did in the previous attempt. The results are shown in Figure 5.12.

As expected, a conflict exists in the resulting constraint set. In the negative derivation, we

59

A1 = (p2,bn_router_eth1e) 6→ (p2,bn_server_ethi)

γ19 ∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[dstip]

Figure 5.12: Second attempt, negative derivation, third scenario

find the following:

(D bn_server).i f aces[bn_server_eth].ipaddr

∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[dstip]

This contradicts the following constraint generated in the positive derivations:

(D bn_server).i f aces[bn_server_eth].ipaddr

/∈ (D bn_router).i f aces[bn_router_eth0].i f ilter[dstip]

We attempt all other derivations using packet filters and forwarding table constraints, and
we find similar conflicts each time. We must move from here to the transport layer.

Transport Layer

The logic offers one option for access control at the transport layer (port filtering at
the server), so we attempt to use that to complete the derivation. At this level of the
network stack, our derivation consists of using two rules, (LINK-FILTER-DSTPORT) and
(IRC_PRIVMSG-ENCAP) to reach the final conclusion:

(γ15,γ17) ∈ (D bn_server).i f aces[bn_server_eth].i f ilter[dst port]

D, /0 ` (s2,c_co_ethe) 6→ (s2,bn_server_ethi)

D, /0 ` (s2,c_co_ethe) 6→ (s2,bn_server_ethi)

D, /0 ` (a2,c_co_ethe) 6→ (a2,bn_server_ethi)

Still, we find a conflict between this and the positive derivations. Our negative derivation
yields the following constraint:

(tcp,6667) ∈ (D bn_server).i f aces[bn_server_eth].i f ilter[dst port]

60

This contradicts the following constraint generated in the positive derivations:

(tcp,6667) /∈ (D bn_server).i f aces[bn_server_eth].i f ilter[dst port]

We have shown that any instrumentation pursuant to a negative outcome creates a conflict
with some positive outcome. Specifically, any attempt to restrict the commander’s access
to the IRC service also cuts the executive officer’s access, which violates the service-level
requirements. We therefore fail to generate a satisfiable constraint set for this scenario’s
specified requirements using the given network semantics and logic. In the first two sce-
narios, we saw how the approach could be successfully used to provide options for con-
straining a network configuration. In this scenario, we see how the approach shows no way
to generate a satisfiable constraint set.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

CHAPTER 6:

Conclusion

In Chapter 1, we posed five research questions. These questions have guided our thesis
research, and they are discussed throughout this thesis. We summarize our findings by
revisiting each of those questions here.

Can a network’s logical organization be automatically derived based on its physical topol-

ogy and service requirements? We found that, given an understanding of network behavior,
we could derive the relationships between logical parameters that are required to meet the
service requirements. There may be multiple derivations, each having a different instantia-
tion of these logical parameters (e.g. number of subnets and VLAN assignments). Which
derivation we pick can influence network performance. Choosing the best derivation re-
quires knowing how different choices affect performance (e.g. locating a filter close to an
origin can reduce traffic). While choosing the best derivation is beyond the scope of this
thesis, we have shown how one can reason about the obligations of a network’s logical
organization in order to deny access to services for some users while guaranteeing access
to them for others. This is a major step away from the current practice of first creating a
logical organization and then hoping it meets access control needs.

What constitutes a logical organization? Section 3.2 directly addresses this question. We
realize that a network’s logical organization is a function of the network’s devices and capa-
bilities. For example, if the network includes switches with VLAN capabilities, the logical
organization will include VLAN assignments for switch ports. Therefore, the parameters
that constitute a logical organization could become quite large. In this work, we attempt to
capture the lowest common denominator and provide a basic set of parameters to show the
service-oriented access control framework’s key concepts.

What constitutes a network service? This question continues to generate discussion. Dur-
ing our work, we considered the information required to describe the service so that the
network can properly support it. With that in mind, we can certainly say that a communi-
cation protocol is essential to a network service. In fact, we found that the communication

63

protocol sufficiently describes the network service, at least for our purposes.

What constitutes a service specification? We found that we could effectively specify a
service with a sequence of rewrite operations representing messages passed between hosts
in accordance with a protocol. This sequence of rewrites provides enough information for
us to constrain a logical organization. A whitepaper [32] provides an example of this. It
specifies HTTP with a regular expression of rewrites representing TCP and HTTP messages
sent between a client and a web server. In this work, however, we focus on individual
rewrite operations.

How can a network’s logical organization change based on the service specification? Sim-
ply put, a network’s logical organization can change drastically depending on the network’s
service requirements. As Chapter 5 shows, we had to consider several different options for
instrumenting the network – and thereby changing the network’s logical organization –
in order to find a solution that allowed to us achieve both positive and negative service
requirements. This task became more difficult as the number of requirements increased.

This thesis describes a logical system that allows us to systematically reason about denying
movement of a message across a network. The system ensures this for all possible paths
through the network. The system also provides formal relationships between application-
layer messages and underlying protocols, thereby bridging the gap between lower-level de-
vice configuration directives and their effects on application-layer messages. It is important
to note that the system bridges this gap using standards and codified network behavior as
opposed to experience and industry best practice, which makes this work unique compared
to other current research efforts, as we discuss in Chapter 2.

The access control logic was applied in Chapter 5 to realistic scenarios that have relevance
in the DOD. To achieve this, we use operational experience in building and maintaining
networks for USMC field artillery battalions. In these scenarios, we also show how our
approach is ideally suited for small-scale tactical networks with fine-grained security and
availability requirements.

It is also important to reiterate that the model (semantics) described in Chapter 3, against
which the soundness of the access control logic is measured, comes from previous work

64

[32]. The access control logic, which is the primary contribution of this thesis, takes a
step toward the overall goal of automatic configuration of networks based on service-level
requirements, both positive and negative. We reproduce the model in this thesis solely for
the purpose of keeping the thesis self-contained.

An important issue for discussion in future work is addressing the effect of dynamic events
on the network’s logical organization. In this thesis, logical organization is assumed not
to be a function of dynamic events like link or device failure. In reality, however, these
events can certainly affect logical organization and thereby affect access control. To ad-
dress dynamic changes in physical topology, we envision a system that can detect such
a topology-changing event, generate and solve a new SOAC instance, and then apply the
resulting logical organization to the network in response to the event.

An algorithm should be developed for computing the best derivation in the access control
logic for a given service. The notion of “best” needs attention. Once addressed, it will also
guide the algorithm in its search for the best instantiation of logical parameters constrained
by virtue of the derivation. Ideally, an algorithmic solution will compute a derivation, gen-
erate constraints on the logical organization based on that derivation, try to satisfy those
constraints, and use a satisfying substitution to configure the network’s devices. A proto-
type algorithm has been written in Prolog, but it makes no attempt to find the best instantia-
tion of constraints. Therefore, we further suggest developing heuristics for guiding such an
algorithm (e.g., finding the substitution that minimizes traffic flow throughout the network
or reduces the sizes of forwarding tables). By doing so, a network administrator needs
only to concern himself with service requirements, letting the SOAC framework optimize
the network’s performance and ensure its security. Therefore, network complexity can be
hidden from administrators who need only specify services and their authorized users, not
the low-level device-specific commands that may collectively achieve this effect.

The network semantics and access control logic might be extended to capture more device
capabilities and underlying network protocols. In this work, we focus on a small set of
devices with a small set of capabilities, and we investigate a small set of services. Future
work should enlarge these sets so that the SOAC approach can leverage more advanced but
commonly used technologies like VLAN, virtual private network (VPN), and NAT. Fur-
thermore, future work in this area should focus on prioritizing service requirements. When

65

supporting multiple services, network administrators must often make tradeoffs between
the security and functionality of those various services. This is especially true in tactical
networks, where bandwidth may be limited and security of certain services may be critical.
We therefore suggest future work in capturing this notion of priority in leveraging QoS
technologies to build a priority-sensitive SOAC approach.

66

APPENDIX A:

Network Semantics

(TRANS)
D ` (x,u)→ (y,v)

D ` (y,v)→ (z,w)

D ` (x,u)→ (z,w)

(FRAME-DECAP)

switch /∈ (D n).type

p ∈ P

f ∈ F

f .data = p

w ∈ (D n).i f aces

p.srcip /∈ (D n).i f aces[w].i f ilter[srcip]

p.dstip /∈ (D n).i f aces[w].i f ilter[dstip]

D ` (f ,wi)→ (p,wi)

(FRAME-ENCAP)

switch /∈ (D n).type

p ∈ P

f ∈ F

f .data = p

w ∈ (D n).i f aces

f .srchw = (D n).i f aces[z].hwaddr

f .srchw /∈ (D n).i f aces[z].e f ilter[srchw]

f .dsthw /∈ (D n).i f aces[z].e f ilter[dsthw]

D ` (p,ze)→ (f ,ze)

67

(SWITCH)

switch ∈ (D n).type

f ∈ F

x,z ∈ (D n).i f aces

x 6= z

f .srchw /∈ (D n).i f aces[z].e f ilter[srchw]

f .dsthw /∈ (D n).i f aces[z].e f ilter[dsthw]

D ` (f ,xi)→ (f ,ze)

(FRAME-TX-SWITCH-RX)

switch ∈ (D n).type

f ∈ F

y ∈ (D m).i f aces[w].direct

m 6= n

f .srchw /∈ (D n).i f aces[y].i f ilter[srchw]

f .dsthw /∈ (D n).i f aces[y].i f ilter[dsthw]

D ` (f ,we)→ (f ,yi)

(FRAME-TX-RX)

switch /∈ (D n).type

f ∈ F

y ∈ (D m).i f aces[w].direct

m 6= n

f .dsthw = (D n).i f aces[y].hwaddr

f .srchw /∈ (D n).i f aces[y].i f ilter[srchw]

f .dsthw /∈ (D n).i f aces[y].i f ilter[dsthw]

D ` (f ,we)→ (f ,yi)

68

(PACKET-DECAP)

switch /∈ (D n).type

router /∈ (D n).type

s ∈ S

p ∈ P

p.data = s

w ∈ (D n).i f aces

p.dstip = (D n).i f aces[w].ipaddr

(s.protocol,s.srcport) /∈ (D n).i f aces[w].i f ilter[srcport]

(s.protocol,s.dst port) /∈ (D n).i f aces[w].i f ilter[dst port]

D ` (p,wi)→ (s,wi)

(PACKET-ENCAP)

switch /∈ (D n).type

router /∈ (D n).type

s ∈ S

p ∈ P

p.data = s

w ∈ (D n).i f aces

(D n).i f aces[w].netmask = m

p.dstip & m = (D n).i f aces[w].dest

p.srcip = (D n).i f aces[w].ipaddr

p.srcip /∈ (D n).i f aces[w].e f ilter[srcip]

p.dstip /∈ (D n).i f aces[w].e f ilter[dstip]

D ` (s,we)→ (p,we)

69

(ROUTER)

router ∈ (D n).type

v,w ∈ (D n).i f aces

v 6= w

(D n).i f aces[w].netmask = mask

p ∈ P

p.dstip 6= 255.255.255.255
p.dstip 6= ¬mask | (D n).i f aces[w].dest

p.dstip & mask = (D n).i f aces[w].dest

(D n).i f aces[v].dest 6= (D n).i f aces[w].dest

p.srcip /∈ (D n).i f aces[w].e f ilter[srcip]

p.dstip /∈ (D n).i f aces[w].e f ilter[dstip]

D ` (p,vi)→ (p,we)

(HTTPS_RQ-DECAP)

server ∈ (D n).type

s ∈ S

a = HT T PS_RQ

s.data = a

w ∈ (D n).i f aces

s.dst port = 443

D ` (s,wi)→ (a,wi)

(HTTPS_RQ-ENCAP)

host ∈ (D n).type

s ∈ S

a = HT T PS_RQ

s.data = a

w ∈ (D n).i f aces

s.protocol = tcp

s.srcport ∈ (D n).portrange

D ` (a,we)→ (s,we)

70

(IRC_PRIVMSG-DECAP)

server ∈ (D n).type

s ∈ S

a = IRC_PRIV MSG

s.data = a

w ∈ (D n).i f aces

s.dst port = 6667

D ` (s,wi)→ (a,wi)

(IRC_PRIVMSG-ENCAP)

host ∈ (D n).type

s ∈ S

a = IRC_PRIV MSG

s.data = a

w ∈ (D n).i f aces

s.protocol = tcp

s.srcport ∈ (D n).portrange

D ` (a,we)→ (s,we)

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIX B:

Access Control Logic

(LINK-FILTER-SRCHW)

host /∈ (D n).type

f ∈ F

u ∈ (D m).i f aces

f .srchw ∈ (D n).i f aces[v].i f ilter[srchw]

m 6= n

D,A ` (f ,ue) 6→ (f ,vi)

(LINK-FILTER-SRCIP)

switch /∈ (D n).type

host /∈ (D n).type

p ∈ P

u ∈ (D m).i f aces

p.srcip ∈ (D n).i f aces[v].i f ilter[srcip]

m 6= n

D,A ` (p,ue) 6→ (p,vi)

(LINK-FILTER-DSTHW)

host /∈ (D n).type

f ∈ F

u ∈ (D m).i f aces

f .dsthw ∈ (D n).i f aces[v].i f ilter[dsthw]

m 6= n

D,A ` (f ,ue) 6→ (f ,vi)

73

(LINK-FILTER-DSTIP)

switch /∈ (D n).type

host /∈ (D n).type

p ∈ P

u ∈ (D m).i f aces

p.dstip ∈ (D n).i f aces[v].i f ilter[dstip]

m 6= n

D,A ` (p,ue) 6→ (p,vi)

(LINK-FILTER-DSTPORT)

server ∈ (D n).type

s ∈ S

u ∈ (D m).i f aces

(s.protocol,s.dst port) ∈ (D n).i f aces[v].i f ilter[dst port]

m 6= n

D,A ` (s,ue) 6→ (s,vi)

(DEVICE-FILTER-SRCHW)

server /∈ (D n).type

host /∈ (D n).type

f ∈ F

u,v ∈ (D m).i f aces

f .srchw ∈ (D m).i f aces[v].e f ilter[srchw]

D,A ` (f ,ui) 6→ (f ,ve)

(DEVICE-FILTER-SRCIP)

router ∈ (D n).type

p ∈ P

u,v ∈ (D m).i f aces

p.srcip ∈ (D m).i f aces[v].e f ilter[srcip]

D,A ` (p,ui) 6→ (p,ve)

74

(DEVICE-FILTER-DSTHW)

server /∈ (D n).type

host /∈ (D n).type

f ∈ F

u,v ∈ (D m).i f aces

f .dsthw ∈ (D m).i f aces[v].e f ilter[dsthw]

D,A ` (f ,ui) 6→ (f ,ve)

(DEVICE-FILTER-DSTIP)

router ∈ (D n).type

p ∈ P

u,v ∈ (D m).i f aces

p.dstip ∈ (D m).i f aces[v].e f ilter[dstip]

D,A ` (p,ui) 6→ (p,ve)

(TERMINAL)

(D m).i f aces[u].direct = {v}
(D n).i f aces = {v}
v 6= x

D,A ` (d,ue) 6→ (d,xi)

(IP-ADDRESS)

p ∈ P

u ∈ (D m).i f aces

p.dstip 6= (D n).i f aces[v].ipaddr

p.dstip 6= 255.255.255.255
router /∈ (D n).type

switch /∈ (D n).type

D,A ` (p,ue) 6→ (p,vi)

75

(SUBNET)

u,v ∈ (D n).i f aces

p ∈ P

(D n).i f aces[v].netmask = mask

p.dstip & mask 6= (D n).i f aces[v].dest

router ∈ (D n).type

D,A ` (p,ui) 6→ (p,ve)

(LINK-ASSUMPTION)
(d,ue) 6→ (d,vi) ∈ A

D,A ` (d,ue) 6→ (d,vi)

(DEVICE-ASSUMPTION)
(d,ui) 6→ (d,ve) ∈ A

D,A ` (d,ui) 6→ (d,ve)

(FWD)

v ∈ (D n).i f aces

(D m).i f aces[u].direct = {v}
∀w ∈ (D n).i f aces−{v}.D,A ` (d,we) 6→ (d,xi)

D,A ` (d,ue) 6→ (d,xi)

(LINK-FWD)

v ∈ (D n).i f aces

(D m).i f aces[u].direct = {v}
∀w ∈ (D n).i f aces−{v}.D,A∪S ` (d,we) 6→ (d,xi)

D,A ` (d,ue) 6→ (d,vi)

D,A ` (d,ue) 6→ (d,xi)

(DEVICE-FWD)

v ∈ (D n).i f aces

(D m).i f aces[u].direct = {v}
∀w ∈ (D n).i f aces−{v}.D,A∪S ` (d,we) 6→ (d,xi)

∀w ∈ (D n).i f aces−{v}.D,A ` (d,vi) 6→ (d,we)

D,A ` (d,ue) 6→ (d,xi)

76

(HTTPS_RQ-ENCAP)

s ∈ S

s.data = α

α = HT T PS_RQ

D,A ` (s,ue) 6→ (s,vi)

D,A ` (α,ue) 6→ (α,vi)

(IRC_PRIVMSG-ENCAP)

s ∈ S

s.data = α

α = IRC_PRIV MSG

D,A ` (s,ue) 6→ (s,vi)

D,A ` (α,ue) 6→ (α,vi)

(SEG-ENCAP)

p ∈ P

p.data = s

D,A ` (p,ue) 6→ (p,vi)

D,A ` (s,ue) 6→ (s,vi)

(PKT-ENCAP)

f ∈ F

f .data = p

D,A ` (f ,ue) 6→ (f ,vi)

D,A ` (p,ue) 6→ (p,vi)

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

List of References

[1] M. Riley et al. (2014, Mar.). Missed alarms and 40 million stolen credit card
numbers: How Target blew it. Bloomberg Businessweek. [Online]. Available:
http://www.businessweek.com/articles/2014-03-13/
target-missed-alarms-in-epic-hack-of-credit-card-data

[2] J. Vijayan. (2007, Mar.). TJX data breach: At 45.6M card numbers, it’s the biggest
ever. Computerworld. [Online]. Available:
http://www.computerworld.com/article/2544306/security0/
tjx-data-breach--at-45-6m-card-numbers--it-s-the-biggest-ever.html

[3] S. Narain et al., “Declarative infrastructure configuration synthesis and debugging,”
J. Netw. Syst. Manage., vol. 16, no. 3, pp. 235–258, Oct. 2008.

[4] T. L. Hinrichs et al., “Practical declarative network management,” in Proc. 1st ACM
Workshop on Research on Enterprise Networking, Barcelona, Spain, 2009, pp. 1–10.

[5] N. Gude et al., “NOX: Towards an operating system for networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul. 2008.

[6] Open Networking Foundation. (2014, May). OpenFlow. [Online]. Available:
http://www.opennetworking.org

[7] X. Chen et al., “Declarative configuration management for complex and dynamic
networks,” in Proc. 6th ACM Int. Conf. on Emerging Networking Experiments and
Technologies, Philadelphia, PA, 2010, pp. 6:1–6:12.

[8] H. Kim and N. Feamster, “Improving network management with software defined
networking,” IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119, Feb. 2013.

[9] R. Soulé et al., “Managing the network with Merlin,” in Proc. 12th ACM Workshop
on Hot Topics in Networks, College Park, MD, 2013, pp. 24:1–24:7.

[10] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming network
routers,” in Proc. 13th Int. Symp. on Practical Aspects of Declarative Languages,
Austin, TX, 2011, pp. 235–249.

[11] N. Foster et al., “Frenetic: A network programming language,” SIGPLAN Not.,
vol. 46, no. 9, pp. 279–291, Sep. 2011.

[12] Y. E. Sung et al., “Towards systematic design of enterprise networks,” in Proc. 4th
ACM Int. Conf. on Emerging Networking Experiments and Technologies, Madrid,
Spain, 2008, pp. 22:1–22:12.

79

[13] G. G. Xie et al., “On static reachability analysis of IP networks,” in Proc. 24th Annu.
Joint Conf. of IEEE Computer and Communications Societies, vol. 3, Miami, FL,
2005, pp. 2170–2183.

[14] A. Williams. (2002, Sep.). Requirements for automatic configuration of IP hosts.
[Online]. Available: http://www.ietf.org/archive/id/draft-ietf-zeroconf-reqts-12.txt

[15] E. Guttman. (2001, Jul.). Zeroconf host profile. [Online]. Available:
http://www.ietf.org/archive/id/draft-ietf-zeroconf-host-prof-01.txt

[16] Apple. Apple Bonjour. [Online]. Available: http://developer.apple.com/bonjour

[17] Dynamic Configuration of IPv4 Link-Local Addresses, IETF RFC 3927, May 2005.

[18] Multicast DNS, IETF RFC 6762, Feb. 2013.

[19] DNS-Based Service Discovery, IETF RFC 6763, Feb. 2013.

[20] C. Akinlar et al., “An IP address configuration algorithm for multi-router Zeroconf
networks,” in Proc. 7th IEEE Int. Symp. on Computers and Communications,
Taormina, Italy, 2002, pp. 462–467.

[21] C. Akinlar and A. Shankar, “IPv4 auto-configuration of multi-router Zeroconf
networks with unique subnets,” in Proc. 4th Int. Conf. on Networking, Reunion
Island, France, 2005, pp. 156–163.

[22] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults with static
analysis,” in Proc. 2nd USENIX Symp. on Networked Systems Design and
Implementation, Boston, MA, 2005, pp. 43–56.

[23] H. Mai et al., “Debugging the data plane with Anteater,” in Proc. ACM SIGCOMM
2011 Conf., Toronto, Ontario, Canada, 2011, pp. 290–301.

[24] P. Kazemian et al., “Header space analysis: Static checking for networks,” in Proc.
9th USENIX Symp. on Networked Systems Design and Implementation, San Jose,
CA, 2012, pp. 113–126.

[25] Requirements for IP Version 4 Routers, IETF RFC 1812, Jun. 1995.

[26] Classless Inter-Domain Routing (CIDR): The Internet Address Assignment and
Aggregation Plan, IETF RFC 4632, Aug. 2006.

[27] Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method
and Physical Layer Specifications, IEEE Std. 802.3-2005, Dec. 2008.

80

[28] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Std. 802.11-2012, Mar. 2012.

[29] Internet Protocol, IETF RFC 791, Sep. 1981.

[30] Transmission Control Protocol, IETF RFC 793, Sep. 1981.

[31] User Datagram Protocol, IETF RFC 768, Aug. 1980.

[32] D. Volpano, “Service-oriented automatic configuration,” unpublished.

[33] A. V. Aho et al., Compilers: Principles, Techniques, and Tools, 2nd ed. Boston, MA:
Addison-Wesley, 2006.

[34] D. Volpano, private communication, May 2014.

[35] G. Tourlakis, Mathematical Logic. Hoboken, NJ: Wiley, 2008.

[36] Tactics, Techniques, and Procedures for Field Artillery Manual Cannon Gunnery,
FM 6-40, United States Army, Washington, DC, Apr. 1996.

[37] Tactics, Techniques, and Procedures for the Field Artillery Cannon Battery, FM
6-50, United States Army, Washington, DC, Apr. 1996.

[38] K. McMullen, private communication, Apr. 2014.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

83

